Skip to main content
Log in

Stereo music visualization through manifold harmonics

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Music visualizations are nowadays included with virtually any media player. They usually rely on harmonic analysis of each sound channel, which automatically generate parameters for procedural image generation. However, only few music visualizations make use of 3d shapes. This paper proposes to use spectral mesh processing techniques, here manifold harmonics, to produce 3d stereo music visualization. The images are generated from 3d models by deforming an initial shape, mapping the sound frequencies to the mesh harmonics. A symmetry criterion is introduced to enhance the stereo effects on the deformed shape. A concise representation of the frequency mapping is proposed to allow for an animated gallery interface with genetic reproduction. Such galleries let the user quickly navigate between visual effects. Rendering such animated galleries in real time is a challenging task, since it requires computing and rendering the deformed shapes at a very high rate. This paper introduces a direct GPU implementation of manifold harmonics filters, which allows the displaying of the animated galleries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apple: PBORenderToVertexArray: render-to-vertex-array using FBO, PBO and VBO (2006). Developer.apple.com/mac/library/samplecode (2011)

  2. Bellard, F.: FFmpeg (2004). www.ffmpeg.org

  3. Bordignon, A., Sigaud, L., Tavares, G., Lopes, H., Lewiner, T., Morgado, W.: Arch generated shear bands in granular systems. Physica A 388(11), 2099–2108 (2009)

    Article  Google Scholar 

  4. Breebaart, J., Faller, C.: Spatial Audio Processing. Wiley, New York (2007)

    Book  Google Scholar 

  5. Clough, R.W., Penzien, J.: Dynamics of Structures. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  6. Comstock, H.: Radio adds third dimension. Popular Sci. pp. 104–106 (1953)

  7. de Moura Pinto, F., Freitas, C.M.D.S.: Two-level interaction transfer function design combining boundary emphasis, manual specification and evolutive generation. In: Sibgrapi, pp. 281–288. IEEE Press, New York (2006)

    Google Scholar 

  8. Gardner, W.: 3D Audio Using Loudspeakers. Kluwer, Dordrecht (1998)

    Google Scholar 

  9. Hernandez, V., Roman, J., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 362 (2005)

    Article  MathSciNet  Google Scholar 

  10. Hiebert, G.: OpenAL programmer’s guide (2005). Connect.creativelabs.com/openal

  11. Jenny, H.: Cymatics: A Study of Wave Phenomena & Vibration, 3rd edn. Macromedia (2001)

  12. Kessenich, J.: The OpenGL Shading Language v 4.0 (2010). www.opengl.org/documentation/glsl

  13. Kubelka, O.: Interactive music visualization. In: Central European Seminar on Computer Graphics (2000)

    Google Scholar 

  14. Lage, M., Lewiner, T., Lopes, H., Velho, L.: CHF: a scalable topological data structure for tetrahedral meshes. In: Sibgrapi, pp. 349–356. IEEE Press, New York (2005)

    Google Scholar 

  15. Lewiner, T., Vieira, T., Bordignon, A., Cabral, A., Marques, C., Paixão, J., Custódio, L., Lage, M., Andrade, M., Nascimento, R., de Botton, S., Pesco, S., Lopes, H., Mello, V., Peixoto, A., Martinez, D.: Tuning manifold harmonics filters. In: Sibgrapi, pp. 110–117. IEEE Press, New York (2010)

    Google Scholar 

  16. Lewiner, T., Vieira, T., Martínez, D., Peixoto, A., Mello, V., Velho, L.: Interactive 3D caricature from harmonic exaggeration. Comput. Graph. 35(3), 586–595 (2011)

    Article  Google Scholar 

  17. Lévy, B., Zhang, H.R.: Spectral mesh processing. In: Siggraph Asia Course Note, pp. 1–47. ACM Press, New York (2009)

    Chapter  Google Scholar 

  18. Liu, Y., Prabhakaran, B., Guo, X.: A robust spectral approach for blind watermarking of manifold surfaces. In: Multimedia and Security, pp. 43–52. ACM Press, New York (2008)

    Google Scholar 

  19. Marks, J., Andalman, B., Beardsley, P., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., et al.: Design galleries: a general approach to setting parameters for computer graphics and animation. In: Siggraph, p. 400. ACM Press, New York (1997)

    Google Scholar 

  20. O’Brien, J.F., Shen, C., Gatchalian, C.M.: Synthesizing sounds from rigid-body simulations. In: Symposium on Computer animation, pp. 175–181. ACM Press, New York (2002)

    Google Scholar 

  21. Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. In: SGP, pp. 1341–1348. Eurographics, Geneva (2008)

    Google Scholar 

  22. Patin, F.: Beat detection algorithms (2003). www.gamedev.net/reference/programming/features/beatdetection

  23. Pentland, A., Williams, J.: Good vibrations: modal dynamics for graphics and animation. ACM Siggraph 23(3), 207–214 (1989)

    Google Scholar 

  24. Rong, G., Cao, Y., Guo, X.: Spectral mesh deformation. Vis. Comput. 24(7), 787–796 (2008)

    Article  Google Scholar 

  25. Taubin, G.: A signal processing approach to fair surface design. In: Siggraph, pp. 351–358 (1995)

    Google Scholar 

  26. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Comput. Graph. Forum, 27, 251–260 (2008)

    Article  Google Scholar 

  27. Vieira, T., Bordignon, A., Peixoto, A., Tavares, G., Lopes, H., Velho, L., Lewiner, T.: Learning good views through intelligent galleries. Comput. Graph. Forum 28(2), 717–726 (2009). (Eurographics Proceedings)

    Article  Google Scholar 

  28. Wang, K., Luo, M., Bors, A., Denis, F.: Blind and robust mesh watermarking using manifold harmonics. In: ICIP, pp. 3657–3660. IEEE Press, New York (2009)

    Google Scholar 

  29. Wu, H.Y., Luo, T., Wang, L., Wang, X.L., Zha, H.: 3D shape retrieval by using manifold harmonics analysis with an augmentedly local feature representation. In: VRCAI, pp. 311–313. ACM Press, New York (2009)

    Chapter  Google Scholar 

  30. Yinghui, C., Jing, W., Xiaohui, L.: Real-time deformation using modal analysis on graphics hardware. In: Graphite, pp. 173–176. ACM Press, New York (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lewiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewiner, T., Marques, C., Paixão, J. et al. Stereo music visualization through manifold harmonics. Vis Comput 27, 905–916 (2011). https://doi.org/10.1007/s00371-011-0617-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0617-4

Keywords

Navigation