Skip to main content
Log in

Analytical solutions for sketch-based convolution surface modeling on the GPU

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Convolution surfaces are attractive for modeling objects of complex evolving topology. This paper presents some novel analytical convolution solutions for planar polygon skeletons with both finite-support and infinite-support kernel functions. We convert the double integral over a planar polygon into a simple integral along the contour of the polygon based on Green’s theorem, which reduces the computational cost and allows for efficient parallel computation on the GPU. For finite support kernel functions, a skeleton clipping algorithm is presented to compute the valid skeletons. The analytical solutions are integrated into a prototype modeling system on the GPU (Graphics Processing Unit). Our modeling system supports point, polyline and planar polygon skeletons. Complex objects with arbitrary genus can be modeled easily in an interactive way. Resulting convolution surfaces with high quality are rendered with interactive ray casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexe, A., Gaildrat, V., Barthe, L.: Interactive modelling from sketches using spherical implicit functions. In: Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, AFRIGRAPH ’04, pp. 25–34. ACM Press, New York (2004)

    Chapter  Google Scholar 

  2. Alexe, A., Barthe, L., Cani, M., Gaildrat, V.: Shape modeling by sketching using convolution surfaces. In: Pacific Graphics, Short paper (2005)

    Google Scholar 

  3. Angelidis, A., Cani, M.P.: Adaptive implicit modeling using subdivision curves and surfaces as skeletons. In: Proceedings of the 7th ACM symposium on Solid Modeling and Applications, SMA’02, pp. 45–52. ACM Press, New York (2002)

    Chapter  Google Scholar 

  4. Bernhardt, A., Pihuit, A., Cani, M.P., Barthe, L.: Matisse: painting 2d regions for modeling free-form shapes. In: EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, SBIM’08, pp. 57–64. Eurographics Association, Annecy (2008)

    Google Scholar 

  5. Bloomenthal, J., Shoemake, K.: Convolution surfaces. Comput. Graph. 25(4), 251–256 (1991)

    Article  Google Scholar 

  6. David, F.: Procedural Elements for Computer Graphics, 2nd edn. McGraw-Hill, New York (1997)

    Google Scholar 

  7. Eyiyurekli, M., Grimm, C., Breen, D.: Editing level-set models with sketched curves. In: Proceedings of the 6th Eurographics Symposium on Sketch-Based Interfaces and Modeling, SBIM’09, p. 45–52. Eurographics Association, New Orleans (2009)

    Chapter  Google Scholar 

  8. Gourmel, O., Pajot, A., Paulin, M., Barthe, L., Poulin, P.: Fitted bvh for fast raytracing of metaballs. Comput. Graph. Forum 29(2), 281–288 (2010)

    Article  Google Scholar 

  9. http://developer.nvidia.com/cuda-toolkit-32-downloads (2011)

  10. Hubert, E.: Convolution surfaces based on polygons for infinite and compact support kernels. Graph. Models 74(1) (2012). doi:10.1016/j.gmod.2011.07.001

  11. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3d freeform design. In: SIGGRAPH, pp. 409–416. ACM Press, New York (1999)

    Google Scholar 

  12. Jin, X., Tai, C.: Analytical methods for polynomial weighted convolution surfaces with various kernels. Comput. Graph. 26(3), 437–447 (2002)

    Article  Google Scholar 

  13. Jin, X., Tai, C.: Convolution surfaces for arcs and quadratic curves with a varying kernel. Vis. Comput. 18(8), 530–546 (2002)

    Article  Google Scholar 

  14. Jin, X., Tai, C., Feng, J., Peng, Q.: An analytical convolution surface model for line skeletons with polynomial weighted distributions. J. Graph. Tools 6(3), 1–12 (2001)

    Article  Google Scholar 

  15. Jin, X., Tai, C., Zhang, H.: Implicit modeling from polygon soup using convolution. Vis. Comput. 25(3), 279–288 (2009)

    Article  Google Scholar 

  16. Kanamori, Y., Szego, Z., Nishita, T.: GPU-based fast ray casting for a large number of metaballs. Comput. Graph. Forum 27(3), 351–360 (2008)

    Article  Google Scholar 

  17. Karpenko, O., Hughes, J.: Smoothsketch: 3d free-form shapes from complex sketches. ACM Trans. Graph. 25(3), 589–598 (2006)

    Article  Google Scholar 

  18. Karpenko, O., Hughes, J., Raskar, R.: Free-from sketching with variational implicit surfaces. Comput. Graph. Forum 21(3), 585–594 (2002)

    Article  Google Scholar 

  19. Knoll, A., Hijazi, Y., Kensler, A., Scjptt, M.: Fast ray tracing of arbitrary implicit surfaces with interval and affine arithmetic. Comput. Graph. Forum 28(1), 26–40 (2007)

    Article  Google Scholar 

  20. Kravtsov, D., Fryazinov, O., Adzhiev, V., Pasko, A., Comninos, P.: Embedded implicit stand-ins for animated meshes: a case of hybrid modelling. Comput. Graph. Forum 29(1), 128–140 (2010)

    Article  Google Scholar 

  21. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  22. McCormack, J., Sherstyuk, A.: Creating and rendering convolution surfaces. Comput. Graph. Forum 17(2), 113–120 (1998)

    Article  Google Scholar 

  23. Schmidt, R., Wyvill, B., Sousa, M., Jorge, J.: Shapeshop: sketch-based solid modeling with blobtrees. In: EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, SBIM’05, pp. 53–62. Eurographics Association, Dublin (2005)

    Google Scholar 

  24. Schmidt, R., Wyvill, B., Sousa, M., Jorge, J.: Sketch-based modeling with the blobtree. In: SIGGRAPH, Technical Sketch. ACM Press, New York (2005)

    Google Scholar 

  25. Sherstyuk, A.: Fast ray tracing of implicit surfaces. Comput. Graph. Forum 18(2), 139–147 (1999)

    Article  Google Scholar 

  26. Sherstyuk, A.: Kernel functions in convolution surfaces: a comparative analysis. Vis. Comput. 15(4), 171–182 (1999)

    Article  MATH  Google Scholar 

  27. Tai, C., Zhang, H., Fong, C.: Prototype modeling from sketched silhouettes based on convolution surfaces. Comput. Graph. Forum 23(4), 71–83 (2004)

    Article  Google Scholar 

  28. Wilfred, K.: Advanced Calculus, 5th edn. Addison-Wesley Longman, Boston (2002)

    Google Scholar 

  29. Wyvill, B., Overveld, K.: Tilling techniques for implicit skeletal models. In: SIGGRAPH courses. ACM Press, New York (1996)

    Google Scholar 

  30. Wyvill, B., Guy, A., Galin, E.: Extending the csg tree: warping, blending and boolean operations in an implicit surface modeling system. Comput. Graph. Forum 18(2), 149–158 (1999)

    Article  Google Scholar 

  31. Wyvill, B., Foster, K., Jepp, P., Schmidt, R., Sousa, M., Jorge, J.: Sketch based construction and rendering of implicit models. In: EUROGRAPHICS, Workshop on Computational Aesthetics in Graphics, Visualization and Image, pp. 67–74. Eurographics Association, Girona (2005)

    Google Scholar 

Download references

Acknowledgements

Xiaogang Jin was supported by the National Key Basic Research Foundation of China (Grant No. 2009CB320801), the NSFC-MSRA Joint Funding (Grant No. 60970159), the National Natural Science Foundation of China (Grant No. 60933007), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. Z1110154). Shengjun Liu was supported by the National Natural Science Foundation of China (Grant No. 61173119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Jin.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MP4 13.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Jin, X., Liu, S. et al. Analytical solutions for sketch-based convolution surface modeling on the GPU. Vis Comput 28, 1115–1125 (2012). https://doi.org/10.1007/s00371-011-0662-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0662-z

Keywords

Navigation