Skip to main content
Log in

Rendering realistic spectral bokeh due to lens stops and aberrations

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Creating bokeh effect in synthesized images can improve photorealism and emphasize interesting subjects. Therefore, we present a novel method for rendering realistic bokeh effects, especially chromatic effects, which are absent for existing methods. This new method refers to two key techniques: an accurate dispersive lens model and an efficient spectral rendering scheme. This lens model is implemented based on optical data of real lenses and considers wavelength dependency of physical lenses by introducing a sequential dispersive ray tracing algorithm inside this model. This spectral rendering scheme is proposed to support rendering of lens dispersion and integration between this new model and bidirectional ray tracing. The rendering experiments demonstrate that our method is able to simulate realistic spectral bokeh effects caused by lens stops and aberrations, especially chromatic aberration, and feature high rendering efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Algorithm 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ang, T.: Dictionary of Photography and Digital Imaging: The Essential Reference for the Modern Photographer. Watson-Guptill, New York (2002)

    Google Scholar 

  2. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Buhler, J., Wexler, D.: A phenomenological model for bokeh rendering. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH Abstracts and Applications, San Antonio, p. 142 (2002)

    Google Scholar 

  4. Devlin, K., Chalmers, A., Wilkie, A., Purgathofer, W.: Tone reproduction and physically based spectral rendering. Eurographics 2002: State of the Art Reports, pp. 101–123 (2002)

  5. Evans, G.F., McCool, M.D.: Stratified wavelength clusters for efficient spectral Monte Carlo rendering. In: Graphics Interface, pp. 42–49 (1999)

    Google Scholar 

  6. Fischer, R.E., Tadic-Galeb, B., Yoder, P.R.: Optical System Design, 2nd edn. McGraw-Hill, New York (2008)

    Google Scholar 

  7. Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. (Proc. ACM SIGGRAPH Conf.) 27(3), 33 (2008)

    Google Scholar 

  8. Haeberli, P., Akeley, K.: The accumulation buffer: hardware support for high-quality rendering. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Dallas, pp. 309–318 (1990)

    Google Scholar 

  9. Kass, M., Lefohn, A., Owens, J.: Interactive depth of field using simulated diffusion on a gpu. Technical report, Pixar Animation Studios (2006)

  10. Kelemen, C., Szirmay-Kalos, L., Antal, G., Csonka, F.: A simple and robust mutation strategy for the metropolis light transport algorithm. Comput. Graph. Forum 21(3), 1–10 (2002)

    Article  Google Scholar 

  11. Kodama, K., Mo, H., Kubota, A.: Virtual bokeh generation from a single system of lenses. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH Research Posters, Boston, p. 77 (2006)

    Google Scholar 

  12. Kolb, C., Mitchell, D., Hanrahan, P.: A realistic camera model for computer graphics. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, pp. 317–324 (1995)

    Google Scholar 

  13. Kosloff, T.J., Tao, M.W., Barsky, B.A.: Depth of field postprocessing for layered scenes using constant-time rectangle spreading. In: Proceedings of Graphics Interface, Kelowna, pp. 39–46 (2009)

    Google Scholar 

  14. Kraus, M., Strengert, M.: Depth-of-field rendering by pyramidal image processing. Computer Graphics Forum 26(3) (2007)

  15. Laikin, M.: Lens Design, 3th edn. Marcel Dekker, New York (2001)

    Google Scholar 

  16. Lanman, D., Raskar, R., Taubin, G.: Modeling and synthesis of aperture effects in cameras. In: Proceedings of International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging, Lisbon, pp. 102–106 (2008)

    Google Scholar 

  17. Lee, S., Eisemann, E., Seidel, H.P.: Depth-of-field rendering with multiview synthesis. ACM Trans. Graph. (Proc. ACM SIGGRAPH Asia Conf.) 28(5), 1–6 (2009)

    Google Scholar 

  18. Lee, S., Eisemann, E., Seidel, H.P.: Real-time lens blur effects and focus control. ACM Trans. Graph. (Proc. ACM SIGGRAPH Conf.) 29(3), 1–7 (2010)

    Google Scholar 

  19. Lee, S., Kim, G.J., Choi, S.: Real-time depth-of-field rendering using point splatting on per-pixel layers. Comput. Graph. Forum 27(7), 1955–1962 (2008)

    Article  Google Scholar 

  20. Merklinger, H.M.: A technical view of bokeh. Photo Tech. 18(3), 37–41 (1997)

    Google Scholar 

  21. Overbeck, R.S., Donner, C., Ramamoorthi, R.: Adaptive wavelet rendering. ACM Trans. Graph. (Proc. ACM SIGGRAPH Asia Conf.) 28(5), 140 (2009)

    Google Scholar 

  22. Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., Stich, M.: Optix: A general purpose ray tracing engine. In: ACM Transactions on Graphics (Proceedings of the SIGGRAPH conference) (2010)

    Google Scholar 

  23. Potmesil, M., Chakravarty, I.: A lens and aperture camera model for synthetic image generation. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Dallas, pp. 297–305 (1981)

    Google Scholar 

  24. Riguer, G., Tatarchuk, N., Isidoro, J.: Real-time depth of field simulation. In: Engel, W.F. (ed.) Shader X2: Shader Programming Tips and Tricks with DirectX 9, pp. 529–556. Wordware, Plano (2003)

    Google Scholar 

  25. Smith, W.J.: Modern Lens Design. McGraw Hill, New York (1992)

    Google Scholar 

  26. Soler, C., Subr, K., Durand, F., Holzschuch, N., Sillion, F.: Fourier depth of field. ACM Trans. Graph. 28(2), 18 (2009)

    Article  Google Scholar 

  27. Sun, Y., Fracchia, F.D., Drew, M.S.: Rendering light dispersion with a composite spectral model. In: International Conference on Color in Graphics and Image Processing (2000)

    Google Scholar 

  28. Sun, Y., Fracchia, F.D., Drew, M.S., Calvert, T.W.: A spectrally based framework for realistic image synthesis. Vis. Comput. 17(7), 429–444 (2001)

    Article  MATH  Google Scholar 

  29. Thomas, S.W.: Dispersive refraction in ray tracing. Vis. Comput. 2(1), 3–8 (1986)

    Article  Google Scholar 

  30. Veach, E.: Robust Monte Carlo methods for light transport simulation. Ph.D. thesis, Stanford University (1997)

  31. Veach, E., Guibas, L.J.: Metropolis light transport. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 65–76 (1997)

    Chapter  Google Scholar 

  32. van Walree, P.: Chromatic aberrations. http://toothwalker.org/optics/chromatic.html

  33. van Walree, P.: Vignetting. http://toothwalker.org/optics/vignetting.html

  34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  35. Wikipedia: Bokeh. http://en.wikipedia.org/wiki/Bokeh

  36. Wikipedia: Dispersion (optics). http://en.wikipedia.org/wiki/Dispersion_(optics)

  37. Wu, J., Zheng, C., Hu, X., Wang, Y., Zhang, L.: Realistic rendering of bokeh effect based on optical aberrations. Vis. Comput. 26(6), 555–563 (2010)

    Article  Google Scholar 

  38. Yuan, Y., Kunii, T.L., Inamoto, N., Sun, L.: Gemstonefire: adaptive dispersive ray tracing of polyhedrons. Vis. Comput. 4(5), 259–270 (1988)

    Article  Google Scholar 

  39. ZEMAX: Zemax: software for optical system design. www.zemax.com

Download references

Acknowledgements

We thank the LuxRender community and anonymous provider for the chess and bubble scenes. This work was partly supported by the National High-Tech Research and Development Plan of China (Grant No. 2009AA01Z303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaze Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Zheng, C., Hu, X. et al. Rendering realistic spectral bokeh due to lens stops and aberrations. Vis Comput 29, 41–52 (2013). https://doi.org/10.1007/s00371-012-0673-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0673-4

Keywords

Navigation