Skip to main content
Log in

Controlling shapes of air bubbles in a multi-phase fluid simulation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Controlling shapes is a challenging problem in a multi-phase fluid simulation. Bubble particles enable the details of air bubbles to be represented within a simulation based on an Euler grid. We control the target shapes of bubbles by the gradient vectors of the signed distance field and attraction forces associated with control particles. Our hybrid approach enables to simulate physically plausible movements of bubbles while preserving the details of a target shape. Furthermore, we control the paths of moving bubbles using user-defined curves and the shape of an air bubbles by drag force. An accurate model of the drag force near the fluid surface means that bubbles have realistic ellipsoidal shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. In: ACM SIGGRAPH 2007 Papers (SIGGRAPH 07). ACM, New York (2007)

    Google Scholar 

  2. Bell, N., Yu, Y., Mucha, P.J.: Particle-based simulation of granular materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 05), pp. 77–86. ACM, New York (2005)

    Chapter  Google Scholar 

  3. Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K.: Bubbling and frothing liquids. In: ACM SIGGRAPH 2007 papers (SIGGRAPH 07). ACM, New York (2007)

    Google Scholar 

  4. Coleman, P.: Motion control for fluid animation: flow along a control path. Tech. rep., Ohio State University, Undergraduate thesis (2002)

  5. Desbrun, M., Gascuel, M.-P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation 96, pp. 61–76. Springer, New York (1996)

    Chapter  Google Scholar 

  6. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 02), pp. 736–744. ACM, New York (2002)

    Chapter  Google Scholar 

  7. Ellingsen, K., Risso, F.: On the rise of an ellipsoidal bubble in water: Oscillatory paths and liquid-induced velocity. J. Fluid Mech. 440, 235–268 (2001)

    Article  MATH  Google Scholar 

  8. Eunchan, J., Kim, D., Song, O.-y.: A new SPH fluid simulation method using ellipsoidal kernels. J. Vis. (2011)

  9. Greenwood, S.T., House, D.H.: Better with bubbles: enhancing the visual realism of simulated fluid. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 04), pp. 287–296. Eurographics Association, Aire-la-Ville (2004)

    Chapter  Google Scholar 

  10. Hong, J.-M., Kim, C.-H.: Controlling fluid animation with geometric potential: Research articles. Comput. Animat. Virtual Worlds 15, 147–157 (2004)

    Article  Google Scholar 

  11. Hong, J.-M., Kim, C.-H.: Discontinuous fluids. In: ACM SIGGRAPH 2005 Papers (SIGGRAPH 05), pp. 915–920. ACM, New York (2005)

    Chapter  Google Scholar 

  12. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., Kim, C.-H.: Bubbles alive. In: ACM SIGGRAPH 2008 papers (SIGGRAPH 08), pp. 48:1–48:4. ACM, New York (2008)

    Google Scholar 

  13. Kim, B., Liu, Y., Llamas, I., Rossignac, J.: Flowfixer: Using BFECC for fluid simulation. In: NPH, pp. 51–56 (2005)

    Google Scholar 

  14. Kim, B., Liu, Y., Llamas, I., Jiao, X., Rossignac, J.: Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26 (2007). (In Proc. of SIGGRAPH)

  15. Kim, B.: Multi-phase fluid simulations using regional level sets. In: ACM SIGGRAPH ASIA 2010 papers (SIGGRAPH ASIA 10), Seoul, Korea, December 2010. vol. 29(6). ACM, New York (2010)

    Google Scholar 

  16. Kim, D., Song, O.-Y., Ko, H.-S.: A practical simulation of dispersed bubble flow. ACM Trans. Graph. 29(4), 1–5 (2010)

    Article  Google Scholar 

  17. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: ACM SIGGRAPH 2004 Papers (SIGGRAPH 04), pp. 457–462. ACM, New York (2004)

    Chapter  Google Scholar 

  18. Lee, H.-Y., Hong, J.-M., Kim, C.-H.: Interchangeable sph and level set method in multiphase fluids. Vis. Comput. 25, 713–718 (2009)

    Article  Google Scholar 

  19. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14, 797–804 (2008)

    Article  Google Scholar 

  20. Muller, M., Charypar, D., Gross, M.: Particlebased fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 03), pp. 154–159. Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  21. Muller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 03), pp. 154–159. Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  22. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 04), pp. 193–202. Eurographics Association, Aire-la-Ville (2004)

    Chapter  Google Scholar 

  23. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., Fedkiw, R.: Two-way coupling of fluids to rigid and deformable solids and shells. In: ACM SIGGRAPH 2008 papers (SIGGRAPH 08), pp. 46:1–46:9. ACM, New York (2008)

    Google Scholar 

  24. Shin, S.-H., Kim, C.-H.: Target-driven liquid animation with interfacial discontinuities. Comput. Animat. Virtual Worlds 18, 447–453 (2007)

    Article  Google Scholar 

  25. Shew, W.L., Poncet, S., Pinton, J.F.: Viscoelastic effects on the dynamics of a rising bubble. J. Stat. Mech. P01009 (2006)

  26. Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 99), pp. 121–128. ACM/Addison-Wesley, New York (1999)

    Chapter  Google Scholar 

  27. Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 05), pp. 229–236. ACM, New York (2005)

    Chapter  Google Scholar 

  28. Thurey, N., Keiser, R., Pauly, M., De U, R.: Detail-preserving fluid control. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 06), pp. 7–12. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0017595)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hun Kim.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(WMV 20.1 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, PR., Lee, HY., Kim, JH. et al. Controlling shapes of air bubbles in a multi-phase fluid simulation. Vis Comput 28, 597–602 (2012). https://doi.org/10.1007/s00371-012-0696-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0696-x

Keywords

Navigation