Skip to main content
Log in

Procedural models for cartoon cracks and fractures animations

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present an approach for animating cracks and fractures in cartoon style. In our method we take a 2D hand-drawn object as input and then construct a 2.5D model of the object in order to approximate the object volume. Next, we generate the Voronoi textures on the 2.5D object model for visual abstraction of cartoon cracks. Further, cracking gaps on the Voronoi textures are widened progressively until Voronoi cells split apart and finally fall onto ground according to simplified physical rules. With minimum user intervention, our model is able to generate cartoon cracks and fractures animations procedurally, as demonstrated by examples given in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Skjeltorp, A.T., Meakin, P.: Fracture in microsphere monolayers studied by experiment and computer simulation. Nature 335, 424–426 (1988)

    Article  Google Scholar 

  2. Federl, P., Prusinkiewicz, P.: A texture model for cracked surfaces, with an application to tree bark. In: Proceedings of the 7th Western Computer Graphics Symposium (1996)

    Google Scholar 

  3. Hirota, K., Tanoue, Y., Kaneko, T.: Generation of crack patterns with a physical model. Vis. Comput. 14(3), 126–137 (1998)

    Article  Google Scholar 

  4. Hirota, K., Tanoue, Y., Kaneko, T.: Simulation of three-dimensional cracks. Vis. Comput. 16, 371–378 (2000)

    Article  MATH  Google Scholar 

  5. Gobron, S., Chiba, N.: Crack pattern simulation based on 3d surface cellular automaton. In: Proceedings of the International Conference on Computer Graphics (2000)

    Google Scholar 

  6. Gobron, S., Chiba, N.: Simulation of peeling using 3d-surface cellular automata. In: Proceedings of the 9th Pacific Conference on Computer Graphics and Applications (2001)

    Google Scholar 

  7. Paquette, E., Poulin, P., Drettakis, G.: The simulation of paint cracking and peeling. In: Proceedings of Graphics Interface (2002)

    Google Scholar 

  8. Federl, P., Prusinkiewicz, P.: Modelling fracture formation in bi-layered materials, with applications to tree bark and drying mud. In: Proceedings of the 13th Western Computer Graphics Symposium (2002)

    Google Scholar 

  9. Federl, P., Prusinkiewicz, P.: Finite element model of fracture formation on growing surfaces. In: Lecture Notes in Computer Science, vol. 3037, pp. 138–145 (2004)

    Google Scholar 

  10. Iben, H., O’Brien, J.: Generating surface crack patterns. Graph. Models 91, 198–208 (2009)

    Article  Google Scholar 

  11. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Comput. Graph. 21, 205–214 (1987)

    Article  Google Scholar 

  12. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Comput. Graph. 22, 269–278 (1988)

    Article  Google Scholar 

  13. Norton, A., Turk, G., Bacon, B., Gerth, J., Sweeney, P.: Animation of fracture by physical modeling. Vis. Comput. 7(4), 210–219 (1991)

    Article  Google Scholar 

  14. Mazarek, O., Martins, C., Amanatides, J.: Animating exploding objects. In: Proceedings of the Graphics Interface, pp. 211–218 (1999)

    Google Scholar 

  15. Neff, M., Fiume, E.: A visual model for blast waves and fracture. In: Proceedings of Graphics Interface, pp. 193–202 (1999)

    Google Scholar 

  16. O’Brien, J., Hodgins, J.: Graphical modeling and animation of brittle fracture. Comput. Graph. 33, 137–146 (1999)

    Google Scholar 

  17. O’Brien, J., Bargteil, A., Hodgins, J.: Graphical Modeling and Animation of Ductile Fracture. In: Proceedings of ACM SIGGRAPH (2002)

    Google Scholar 

  18. Muller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface (2004)

    Google Scholar 

  19. Muller, M., Teschner, M., Gross, M.: Physically-based simulation of objects represented by surface meshes. In: Proceedings of the Computer Graphics International (2004)

    Google Scholar 

  20. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23(3), 385–392 (2004)

    Article  Google Scholar 

  21. Gingold, Y., Secord, A., Han, J.Y., Grinspun, E., Zorin, D.: A discrete model for inelastic deformation of thin shells. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2004)

    Google Scholar 

  22. Pauly, M., Keiser, R., Adams, B., Dutre, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. In: Proceedings of the ACM SIGGRAPH (2005)

    Google Scholar 

  23. Worley, S.: A cellular texture basis function. In: Proceedings of SIGGRAPH, pp. 291–294 (1996)

    Google Scholar 

  24. Raghavachary, S.: Fracture generation on polygonal meshes using Voronoi polygons. In: Proceedings of SIGGRAPH (Sketches), p. 187 (2002)

    Google Scholar 

  25. Mould, D.: Image-guided fracture. In: Proceedings of Graphics Interface (2005)

    Google Scholar 

  26. Wyvill, B., van Overveld, K., Carpendale, S.: Rendering cracks in batik. In: Proceedings of the 3rd International Symposium on Nonphotorealistic Animation and Rendering (2004)

    Google Scholar 

  27. Martinet, A., Galin, E., Desbenoit, B., Akkouche, S.: Procedural modeling of cracks and fractures. In: Proceedings of International Conference on Shape Modeling and Applications (2004)

    Google Scholar 

  28. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  29. Hoff, K.E., Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proceeding of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 277–286 (1999)

    Google Scholar 

  30. Lischinski, D.: Incremental Delaunay triangulation. In: Heckbert, P. (ed.) Graphics Gems IV, pp. 47–59. Academic Press, Boston (1994)

    Google Scholar 

  31. Nvdia: PhysX. http://developer.nvidia.com/physx (2012). Accessed 22 March 2012

Download references

Acknowledgements

This work is supported by the State Key Program of National Natural Science Foundation of China (No. 60933007), the Key Technologies R&D Program of China (No. 2007BAH11B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Yu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 53.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, J., Yu, J. Procedural models for cartoon cracks and fractures animations. Vis Comput 28, 869–875 (2012). https://doi.org/10.1007/s00371-012-0698-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0698-8

Keywords

Navigation