Skip to main content
Log in

Eigen deformation of 3D models

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Recent advances in mesh deformations have been dominated by two techniques: one uses an intermediate structure like a cage which transfers the user intended moves to the mesh, the other lets the user to impart the moves to the mesh directly. The former one lets the user deform the model in real-time and also preserve the shape with sophisticated techniques like Green Coordinates. The direct techniques on the other hand free the user from the burden of creating an appropriate cage though they take more computing time to solve larger non-linear optimizations. It would be ideal to develop a cage-free technique that provides real-time deformation while respecting the local geometry. Using a simple eigen-framework, we devise such a technique. Our framework creates an implicit skeleton automatically. The user only specifies the motion in a simple and intuitive manner, and our algorithm computes a deformation whose quality is similar to that of the cage-based scheme with Green Coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The concept of eigenskeletons is not new and has been used for mesh compression in [17]. For more applications, please refer to the survey papers [20, 34].

  2. In the ideal case, the Laplace–Beltrami operator is symmetric, which makes its eigenvectors orthonormal, and Φ the identity matrix. However, we use area weights when building the Laplace–Beltrami operator, which makes it asymmetric, and Φ a matrix with non-zero off diagonal entries.

References

  1. Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. In: Proc. SIGGRAPH’07, pp. 72:1–72:8 (2007)

    Google Scholar 

  2. Belkin, M., Sun, J., Wang, Y.: Discrete Laplace operator on meshed surfaces. In: Proc. SCG’08, pp. 278–287 (2008)

    Google Scholar 

  3. Ben-Chen, M., Weber, O., Gotsman, C.: Variational harmonic maps for space deformation. In: Proc. SIGGRAPH’09, pp. 34:1–34:11 (2009)

    Google Scholar 

  4. Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions. Comput. Graph. Forum 24(3), 611–621 (2005)

    Article  Google Scholar 

  5. Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: Primo: coupled prisms for intuitive surface modeling. In: Proc. SGP’06, pp. 11–20 (2006)

    Google Scholar 

  6. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)

    Article  Google Scholar 

  7. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. SIGGRAPH’99, pp. 317–324 (1999)

    Google Scholar 

  8. Dey, T.K., Ranjan, P., Wang, Y.: Convergence, stability, and discrete approximation of Laplace spectra. In: Proc. SODA’10, pp. 650–663 (2010)

    Google Scholar 

  9. Du, H., Qin, H.: Medial axis extraction and shape manipulation of solid objects using parabolic PDEs. In: Proc. ACM Sympos. Solid Modeling Appl.’04, pp. 25–35 (2004)

    Google Scholar 

  10. Floater, M.S.: Mean value coordinates. Comput. Aided Des. 20(1), 19–27 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Des. 22(7), 623–631 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Hildebrandt, K., Polthier, K.: On approximation of the Laplace–Beltrami operator and the Willmore energy of surfaces. In: Proc. SGP’11, pp. 1513–1520 (2011)

    Google Scholar 

  13. Hildebrandt, K., Schulz, C., Tycowicz, C.V., Polthier, K.: Interactive surface modeling using modal analysis. ACM Trans. Graph. 30(5), 119:1–119:11 (2011)

    Article  Google Scholar 

  14. Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded biharmonic weights for real-time deformation. In: Proc. SIGGRAPH’11, pp. 78:1–78:8 (2011)

    Google Scholar 

  15. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. In: Proc. SIGGRAPH’07, pp. 71:1–71:10 (2007)

    Google Scholar 

  16. Ju, T., Schaefer, S., Warren, J., Desbrun, M.: A geometric construction of coordinates for convex polyhedra using polar duals. In: Proc. SGP’05, pp. 181–186 (2005)

    Google Scholar 

  17. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proc. SIGGRAPH’00, pp. 279–286 (2000)

    Google Scholar 

  18. Kobayashi, K.G., Ootsubo, K.: T-ffd:free-form deformation by using triangular mesh. In: Proc. Sympos. Solid Modeling Appl.’03, pp. 226–234 (2003)

    Chapter  Google Scholar 

  19. Langer, T., Belyaev, A., Seidel, H.-P.: Spherical barycentric coordinates. In: Proc. SGP’06, pp. 81–88 (2006)

    Google Scholar 

  20. Levy, B.: Laplace–Beltrami eigenfunctions: towards an algorithm that understands geometry. In: IEEE Internat. Conf. on Shape Modeling Appl.’06 (2006). Invited talk

    Google Scholar 

  21. Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. In: Proc. SIGGRAPH’08, pp. 78:1–78:10 (2008)

    Google Scholar 

  22. MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topology. In: Proc. SIGGRAPH’96, pp. 181–188 (1996)

    Google Scholar 

  23. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace–Beltrami spectra as “shape-dna” of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  25. Rong, G., Cao, Y., Guo, X.: Spectral surface deformation with dual mesh. In: Proc. Internat. Conf. on Comput. Animation and Social Agents’08, pp. 17–24 (2008)

    Google Scholar 

  26. Rong, G., Cao, Y., Guo, X.: Spectral mesh deformation. Vis. Comput. 24(7–9), 787–796 (2008)

    Article  Google Scholar 

  27. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: SIGGRAPH’86, pp. 151–160 (1986)

    Google Scholar 

  28. Sorkine, O.: Differential representations for mesh processing. Comput. Graph. Forum 25(4), 789–807 (2006)

    Article  Google Scholar 

  29. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proc. SGP’07, pp. 109–116 (2007)

    Google Scholar 

  30. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.-P.: Laplacian surface editing. In: Proc. SGP’04, pp. 179–188 (2004)

    Google Scholar 

  31. Warren, J.: Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6(2), 97–108 (1996)

    Article  MathSciNet  Google Scholar 

  32. Weber, O., Sorkine, O., Lipman, Y., Gotsman, C.: Context-aware skeletal shape deformation. Comput. Graph. Forum 265–274

  33. Yoshizawa, S., Belyaev, A.G., Seidel, H.-P.: Free-form skeleton-driven mesh deformations. In: Proc. ACM Sympos. Solid Modeling Appl.’03, pp. 247–253 (2003)

    Chapter  Google Scholar 

  34. Zhang, H., van Kaick, O., Dyer, R.: Spectral mesh processing. Comput. Graph. Forum 29(6), 1865–1894 (2010)

    Article  Google Scholar 

  35. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.-Y.: Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph. 24(3), 496–503 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their comments, and also the authors of [26] for providing the software implementation of their work. Meshes used in this paper were obtained from AIM@Shape Shape Repository. This work is supported by the National Science Foundation Grants CCF-0830467 and CCF-0747082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawas Ranjan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, T.K., Ranjan, P. & Wang, Y. Eigen deformation of 3D models. Vis Comput 28, 585–595 (2012). https://doi.org/10.1007/s00371-012-0705-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0705-0

Keywords

Navigation