Skip to main content
Log in

Volume rendering of unstructured hexahedral meshes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Important engineering applications use unstructured hexahedral meshes for numerical simulations. Hexahedral cells, when compared to tetrahedral ones, tend to be more numerically stable and to require less mesh refinement. However, volume visualization of unstructured hexahedral meshes is challenging due to the trilinear variation of scalar fields inside the cells. The conventional solution consists in subdividing each hexahedral cell into five or six tetrahedra, approximating a trilinear variation by a nonadaptive piecewise linear function. This results in inaccurate images and increases the memory consumption. In this paper, we present an accurate ray-casting volume rendering algorithm for unstructured hexahedral meshes. In order to capture the trilinear variation along the ray, we propose the use of quadrature integration. A set of computational experiments demonstrates that our proposal produces accurate results, with reduced memory footprint. The entire algorithm is implemented on graphics cards, ensuring competitive performance. We also propose a faster approach that, as the tetrahedron subdivision scheme, also approximates the trilinear variation by a piecewise linear function, but in an adaptive and more accurate way, considering the points of minimum and maximum of the scalar function along the ray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bernadon, F.F., Pagot, C.A., Comba, J.L.D., Silva, C.T.: GPU-based tiled ray casting using depth peeling. J. Graph. GPU Game Tools 11(4), 1–16 (2006)

    Article  Google Scholar 

  2. Carr, H., Moller, T., Snoeyink, J.: Artifacts caused by simplicial subdivision. IEEE Trans. Vis. Comput. Graph. 12, 231–242 (2006). doi:10.1109/TVCG.2006.22

    Article  Google Scholar 

  3. Espinha, R., Celes, W.: High-quality hardware-based ray-casting volume rendering using partial pre-integration. In: Proceedings of the XVIII Brazilian Symposium on Computer Graphics and Image Processing, p. 273. IEEE Computer Society, Washington (2005). doi:10.1109/SIBGRAPI.2005.29. http://portal.acm.org/citation.cfm?id=1114697.1115365

    Google Scholar 

  4. Garrity, M.P.: Raytracing irregular volume data. In: Proceedings of the 1990 Workshop on Volume visualization, VVS’90, pp. 35–40. ACM, New York (1990). doi:10.1145/99307.99316

    Chapter  Google Scholar 

  5. Hajjar, J.E., Marchesin, S., Dischler, J., Mongenet, C.: Second order pre-integrated volume rendering. In: IEEE Pacific Visualization Symposium (2008)

    Google Scholar 

  6. Marchesin, S., de Verdiere, G.: High-quality, semi-analytical volume rendering for amr data. IEEE Trans. Vis. Comput. Graph. 15(6), 1611–1618 (2009). doi:10.1109/TVCG.2009.149

    Article  Google Scholar 

  7. Marmitt, G., Slusallek, P.: Fast ray traversal of tetrahedral and hexahedral meshes for direct volume rendering. In: Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization (EuroVIS), Lisbon, Portugal (2006)

    Google Scholar 

  8. Max, N.L., Williams, P.L., Silva, C.T.: Cell projection of meshes with non-planar faces. In: Data Visualization: The State of the Art, pp. 157–168 (2003)

    Chapter  Google Scholar 

  9. Miranda, F.M., Celes, W.: Accurate volume rendering of unstructured hexahedral meshes. In: Lewiner, T., Torres, R. (eds.) Sibgrapi 2011 (24th Conference on Graphics, Patterns and Images), pp. 93–100. IEEE, Maceió (2011). doi:10.1109/SIBGRAPI.2011.3. http://www.im.ufal.br/evento/sibgrapi2011/

    Chapter  Google Scholar 

  10. Moreland, K., Angel, E.: A fast high accuracy volume renderer for unstructured data. In: Proceedings of the 2004 IEEE Symposium on Volume Visualization and Graphics, VV’04, pp. 9–16. IEEE Computer Society, Washington (2004). doi:10.1109/VV.2004.2

    Chapter  Google Scholar 

  11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992)

    Google Scholar 

  12. Röttger, S., Ertl, T.: A two-step approach for interactive pre-integrated volume rendering of unstructured grids. In: Proceedings of the 2002 IEEE Symposium on Volume Visualization and Graphics, VVS’02, pp. 23–28. IEEE Press, Piscataway (2002) http://portal.acm.org/citation.cfm?id=584110.584114

    Chapter  Google Scholar 

  13. Röttger, S., Kraus, M., Ertl, T.: Hardware-accelerated volume and isosurface rendering based on cell-projection. In: Proceedings of the Conference on Visualization’00, VIS’00, pp. 109–116. IEEE Computer Society Press, Los Alamitos (2000). http://portal.acm.org/citation.cfm?id=375213.375226

    Google Scholar 

  14. Shirley, P., Tuchman, A.: A polygonal approximation to direct scalar volume rendering. In: Proceedings of the 1990 Workshop on Volume Visualization, VVS’90, pp. 63–70. ACM, New York (1990). doi:10.1145/99307.99322

    Chapter  Google Scholar 

  15. Weiler, M., Kraus, M., Merz, M., Ertl, T.: Hardware-based ray casting for tetrahedral meshes. In: Proceedings of the 14th IEEE Visualization 2003, VIS’03, p. 44. IEEE Computer Society, Washington (2003). doi:10.1109/VISUAL.2003.1250390

    Google Scholar 

  16. Weiler, M., Mallon, P.N., Kraus, M., Ertl, T.: Texture-encoded tetrahedral strips. In: Proceedings of the 2004 IEEE Symposium on Volume Visualization and Graphics, VV’04, pp. 71–78. IEEE Computer Society, Washington (2004). doi:10.1109/VV.2004.13

    Chapter  Google Scholar 

  17. Williams, P.L., Max, N.: A volume density optical model. In: Proceedings of the 1992 Workshop on Volume Visualization, VVS’92, pp. 61–68. ACM, New York (1992). doi:10.1145/147130.147151

    Chapter  Google Scholar 

  18. Williams, P.L., Max, N.L., Stein, C.M.: A high accuracy volume renderer for unstructured data. IEEE Trans. Vis. Comput. Graph. 4, 37–54 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We thank CAPES (Brazilian National Research and Development Council) and CNPq (Brazilian National Council for Scientific and Technological Development) for the financial support to conduct this research. This work was done at the Tecgraf laboratory at PUC-Rio, which is mainly funded by the Brazilian oil company, Petrobras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Markus Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, F.M., Celes, W. Volume rendering of unstructured hexahedral meshes. Vis Comput 28, 1005–1014 (2012). https://doi.org/10.1007/s00371-012-0742-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0742-8

Keywords

Navigation