Skip to main content
Log in

Modeling and animation of fracture of heterogeneous materials based on CUDA

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Existing techniques for animation of object fracture are based on an assumption that the object materials are homogeneous while most real world materials are heterogeneous. In this paper, we propose to use movable cellular automata (MCA) to simulate fracture phenomena on heterogeneous objects. The method is based on the discrete representation and inherits the advantages from both classical cellular automaton and discrete element methods. In our approach, the object is represented as discrete spherical particles, named movable cellular automata. MCA is used to simulate the material and physical properties so as to determine when and where the fracture occurs. To achieve real-time performance, we accelerate the complex computation of automata’s physical properties in MCA simulation using CUDA on a GPU. The simulation results are directly sent to vertex buffer object (VBO) for rendering to avoid the costly communication between CPU and GPU. The experimental results show the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Imagire, T., Johan, H., Nishita, T.: A fast method for simulating destruction and the generated dust and debris. Vis. Comput. 25, 719–727 (2009)

    Article  Google Scholar 

  2. Terzopoulos, D., Witkin, A.: Physically based models with rigid and deformable components. IEEE Comput. Graph. Appl. 8, 41–51 (1988)

    Article  Google Scholar 

  3. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, pp. 269–278 (1988)

    Chapter  Google Scholar 

  4. Norton, A., Turk, G., Bacon, B., Gerth, J., Sweeney, P.: Animation of fracture by physical modeling. Vis. Comput. 7, 210–219 (1991)

    Article  Google Scholar 

  5. O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 137–146 (1999)

    Google Scholar 

  6. Parker, E.G., O’Brien, J.F.: Real-time deformation and fracture in a game environment. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, Louisiana, pp. 165–175 (2009)

    Chapter  Google Scholar 

  7. Bao, Z., Hong, J., Teran, J., Fedkiw, R.: Fracturing rigid materials. IEEE Trans. Vis. Comput. Graph. 13, 370–378 (2007)

    Article  Google Scholar 

  8. Su, J., Schroeder, C., Fedkiw, R.: Energy stability and fracture for frame rate rigid body simulations. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, Louisiana, pp. 155–164 (2009)

    Chapter  Google Scholar 

  9. Desbrun, M., Cani-Gascue, M.: Animating soft substances with implicit surfaces. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 287–290 (1995)

    Google Scholar 

  10. Muller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Grenoble, France, pp. 141–151 (2004)

    Chapter  Google Scholar 

  11. Muller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. In: Proceedings of the ACM SIGGRAPH 2005 Papers, Los Angeles, California, pp. 471–478 (2005)

    Chapter  Google Scholar 

  12. Pauly, M., Keiser, R., Adams, B., Dutre, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. In: Proceedings of the ACM SIGGRAPH 2005 Papers, Los Angeles, California, pp. 957–964 (2005)

    Chapter  Google Scholar 

  13. Guo, X., Qin, H.: Real-time meshless deformation. Comput. Animat. Virtual Worlds 16, 189–200 (2005)

    Article  Google Scholar 

  14. Bell, N., Yu, Y., Mucha, P.J.: Particle-based simulation of granular materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, California, pp. 77–86 (2005)

    Chapter  Google Scholar 

  15. Liu, N., He, X., Li, S., Wang, G.: Meshless simulation of brittle fracture. Comput. Animat. Virtual Worlds 22, 115–124 (2011)

    Article  Google Scholar 

  16. Guo, X., Li, X., Bao, Y., Gu, X., Qin, H.: Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans. Vis. Comput. Graph. 12(3), 375–385 (2006)

    Article  Google Scholar 

  17. Psakhie, S.G., Horie, Y., Korostelev, S.Y., Smolin, A.Y., Dmitriev, A.I., Shilko, E.V., Alekseev, S.V.: Method of movable cellular automata as a tool for simulation within the framework of mesomechanics. Russ. Phys. J. 38, 1157–1168 (1995)

    Article  Google Scholar 

  18. Psakhie, S.G., Korostelev, S.Y., Smolin, A.Y., Dmitriev, A.I., Shilko, E.V., Moiseyenko, D.D., et al.: Movable cellular automata method as a tool for physical mesomechanics of materials. Phys. Mesomech. 1(1), 89–101 (1998)

    Google Scholar 

  19. Psakhie, S.G., Moiseyenko, D.D., Smolin, A.Y., Shilko, E.V., Dmitriev, A.I., Korostelev, S.Y., et al.: The features of fracture of heterogeneous materials and frame structures. Potentialities of mca design. Comput. Mater. Sci. 16(1–4), 333–343 (1999)

    Article  Google Scholar 

  20. Psakhie, S.G., Zavshekand, S., Jezershek, J., Shilko, E.V., Dmitriev, A.I., Smolin, A.Y., et al.: Computer-aided examination and forecast of strength properties of heterogeneous coal-beds. Comput. Mater. Sci. 19(1–4), 69–76 (2000)

    Article  Google Scholar 

  21. Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Y., Smolin, A.Y., Shilko, E.V., et al.: Movable cellular automata method for simulating materials with mesostructure. Theor. Appl. Fract. Mech. 37(1–3), 311–334 (2001)

    Article  Google Scholar 

  22. Chen, K.: MCA method and the study of penetration of projectile into concrete target. Ph.D. Thesis, Nanjing University of Science and Technology, Nanjing (December 2005)

  23. Green, S.: CUDA particles. White paper (November 2007)

  24. Georgii, J., Westermann, R.: Mass-spring systems on the gpu. Simul. Model. Pract. Theory 13(8), 693–702 (2005)

    Article  Google Scholar 

  25. Liu, W., Schmidt, B., Voss, G., Mller-Wittig, W.: Accelerating molecular dynamics simulations using graphics processing units with cuda. Comput. Phys. Commun. 179(9), 634–641 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We first thank the anonymous reviewers for their careful and valuable comments. We are grateful to Aiping Wang and Kai Xu from NUDT for fruitful discussions. This work is supported by the National Basic Research Program (No. 2009CB723803) and the National Science Foundation Program (No. 60873120) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangfan Ning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ning, J., Xu, H., Wu, B. et al. Modeling and animation of fracture of heterogeneous materials based on CUDA. Vis Comput 29, 265–275 (2013). https://doi.org/10.1007/s00371-012-0765-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0765-1

Keywords

Navigation