Skip to main content
Log in

Matrix based cyclic spectral estimator for fast and robust texture classification

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Utilization of cyclostationarity is a fresh paradigm in texture classification. This paper employs the Strip Spectral Correlation Analyzer (SSCA) as the new and superior method of such a category. The SSCA has been much more computational efficient than the other spectral correlation estimators, such as the FFT-Accumulated Method (FAM) or Direct Frequency Smoothing (DFS). Further, for comparable efficacy of the cyclostationary based analyzers, two new algorithms for implementation of both SSCA and FAM are proposed. The algorithms are fast, parallel, and linear-algebraic based, which brings many advantages in computational competence, feature generation flexibility, simplicity, and hardware implementation. SSCA as the unused promising texture analyzer and the new FAM implementation are compared with other state of the art methods in the case of classification accuracy, noise resistance and feature efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abadi, M., Grandchamp, E.: Legendre spectrum for texture classification. IEEE (2006)

  2. Abbadeni, N.: Computational perceptual features for texture representation and retrieval. IEEE Trans. Image Process. 20, 236–246 (2011)

    Article  MathSciNet  Google Scholar 

  3. Al Nadi, D.A., Mansour, A.M.: Independent component analysis (ICA) for texture classification, pp. 1–5. IEEE (2008)

  4. Alfonso, F.S., Jorge, R.R., Luis Angel, R.F.: Use of Gabor filters for texture classification of digital images. Fís. Tierra 17, 47–56 (2005)

    Google Scholar 

  5. Chehel Amirani, M., Beheshti Shirazi, A.A.: Evaluation of the texture analysis using spectral correlation function. Fundam. Inform. 95(2–3), 245–262 (2009)

    Google Scholar 

  6. Cheng, Q., Zhou, H., Cheng, J.: The Fisher–Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1217–1233 (2011)

    Article  Google Scholar 

  7. Coggins, J.M.: A framework for texture analysis based on spatial filtering. Ph.D. thesis, East, Lansing, MI, USA (1983). AAI8315444

  8. Dong, Y., Ma, J.: Wavelet-based image texture classification using local energy histograms. IEEE Signal Process. Lett. 18, 247–250 (2011)

    Article  Google Scholar 

  9. Fu, X., Wei, W.: Centralized binary patterns embedded with image Euclidean distance for facial expression recognition (2008)

  10. Gardner, W.A.: Statistical Spectral Analysis: A Nonprobabilistic Theory. Prentice-Hall, Upper Saddle River (1986)

    Google Scholar 

  11. Gardner, W.: Signal interception: a unifying theoretical framework for feature detection. IEEE Trans. Commun. 36(8), 897–906 (1988)

    Article  Google Scholar 

  12. Gardner, W.: Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Process. Mag. 8(2), 14–36 (1991)

    Article  Google Scholar 

  13. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19, 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  14. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  15. Heikkil, M., Pietikinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009)

    Article  Google Scholar 

  16. Iakovidis, D.K., Keramidas, E.G., Maroulis, D.: Fuzzy local binary patterns for ultrasound texture characterization (2008)

  17. Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process. 15, 2866–2878 (2006)

    Article  Google Scholar 

  18. Khellah, F.M.: Texture classification using dominant neighborhood structure. IEEE Trans. Image Process. 20, 3270–3279 (2011)

    Article  MathSciNet  Google Scholar 

  19. Kwitt, R., Meerwald, P., Uhl, A.: Efficient texture image retrieval using copulas in a Bayesian framework. IEEE Trans. Image Process. 20, 2063–2077 (2011)

    Article  MathSciNet  Google Scholar 

  20. Li, X., Hu, W., Zhang, Z., Wang, H.: Heat kernel based local binary pattern for face representation. IEEE Signal Process. Lett. 17(3), 308–311 (2010)

    Article  Google Scholar 

  21. Liao, S., Law, M.W., Chung, A.C.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009)

    Article  MathSciNet  Google Scholar 

  22. Martens, G., Poppe, C., Lambert, P., Walle, R.: Noise- and compression-robust biological features for texture classification. Vis. Comput. 26(6–8), 915–922 (2010)

    Article  Google Scholar 

  23. Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)

    Article  Google Scholar 

  24. Nanni, L., Lumini, A., Brahnam, S.: Survey on lbp based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012)

    Article  Google Scholar 

  25. Ojala, T., Pietikinen, M.: Unsupervised texture segmentation using feature distributions. In: Bimbo, A. (ed.) Image Analysis and Processing, vol. 1310, pp. 311–318. Springer, Berlin (1997)

    Chapter  Google Scholar 

  26. Phil, B.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1999)

    Google Scholar 

  27. Qian, X., Hua, X., Chen, P., Ke, L.: PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit. 44(10–11), 2502–2515 (2011)

    Article  Google Scholar 

  28. Roberts, R., Brown, W., Loomis, H.: Computationally efficient algorithms for cyclic spectral analysis. IEEE Signal Process. Mag. 8, 38–49 (1991)

    Article  Google Scholar 

  29. Rosiles, J.G., Upadhyayula, S., Cabrera, S.D.: Rotationally-blind texture classification using frame sequential approximation error curves, pp. 1325–1328. IEEE (2008)

  30. Tou, J.Y., Tay, Y.H., Lau, P.Y.: In: Recent Trends in Texture Classification: A Review (2009)

    Google Scholar 

  31. Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Computer Vision ECCV 2006, vol. 3952, pp. 589–600. Springer, Berlin (2006)

    Chapter  Google Scholar 

  32. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Varma, M., Garg, R.: Locally invariant fractal features for statistical texture classification, pp. 1–8. IEEE (2007)

  34. Wang, Z., Yong, J.: Texture analysis and classification with linear regression model based on wavelet transform. IEEE Trans. Image Process. 17, 1421–1430 (2008)

    Article  MathSciNet  Google Scholar 

  35. Xu, Q., Chen, Y.Q.: Multiscale blob features for gray scale, rotation and spatial scale invariant texture classification, pp. 29–32. IEEE (2006)

  36. Zhang, H.: Exploring conditions for the optimality of naïve Bayes. Int. J. Pattern Recognit. Artif. Intell. 19(2), 183–198 (2005)

    Article  Google Scholar 

  37. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor (2010)

  38. Zhao, Y., Zhang, L., Li, P., Huang, B.: Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features. IEEE Trans. Geosci. Remote Sens. 45, 1458–1468 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadid Sahami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahami, S., Chehel Amirani, M. Matrix based cyclic spectral estimator for fast and robust texture classification. Vis Comput 29, 1245–1257 (2013). https://doi.org/10.1007/s00371-012-0766-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0766-0

Keywords

Navigation