Skip to main content
Log in

Perception-motivated visualization for 3D city scenes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Many approaches have been developed to visualize 3D city scenes, most of which exhibit the visualization results in a uniform rendering style. This paper presents an expressive rendering approach for visualizing large-scale 3D city scenes with various rendering styles integrated in a seamless way. Each view is actually a combination of the photorealistic rendering and the nonphotorealistic rendering to highlight the information that is interesting for the users and de-emphasize the other that is less important. At run-time, the users are allowed to specify their interested locations interactively. Our system automatically computes the salience of each location and illustrates the entire scene with emphasis in the area of interests. The GPU-based implementation enables interactive realtime performance. Our implementation of a system demonstrates benefits in many applications such as 3D GPS navigation, tourist information, etc. We have performed a pilot user evaluation of the effect for users to access information in 3D city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arge, L., Berg, M.D., Haverkort, H., Yi, K.: The priority R-tree: a practically efficient and worst-case optimal R-tree. ACM Trans. Algorithms 4, 1–30 (2008)

    Article  MathSciNet  Google Scholar 

  2. Brosz, J., Samavati, F.F., Sheelagh, M.T.C., Sousa, M.C.: Single camera flexible projection. In: NPAR ’07, pp. 33–42 (2007)

    Chapter  Google Scholar 

  3. Cole, F., DeCarlo, D., Finkelstein, A., Kin, K., Morley, K., Santella, A.: Directing gaze in 3D models with stylized focus. In: Proc. of EGSR’06, pp. 377–387 (2006)

    Google Scholar 

  4. Cole, F., Finkelstein, A.: Partial visibility for stylized lines. In: NPAR 2008 (2008)

    Google Scholar 

  5. Cole, F., Finkelstein, A.: Fast high-quality line visibility. In: Proceedings of I3D 2009, pp. 115–120 (2009)

    Google Scholar 

  6. Döllner, J., Buchholz, H., Nienhaus, M., Florian, K.: Illustrative visualization of 3d city models. In: Proc. of Visualization and Data Analysis 2005, pp. 42–51 (2005)

    Chapter  Google Scholar 

  7. Döllner, J., Walther, M.: Real-time expressive rendering of city models. In: Proc. of InfoVis’03, p. 245 (2003)

    Google Scholar 

  8. Forberg, A., Mayer, H.: Generalization of 3d building data based on scale spaces. In: International Archives of Photogrammetry and Remote Sensing, pp. 225–230 (2002)

    Google Scholar 

  9. Grabler, F., Agrawala, M., Sumner, R.W., Pauly, M.: Automatic generation of tourist maps. Trans. Graph. 27(3), 1–11 (2008)

    Article  Google Scholar 

  10. Glander, T., Döllner, J.: Cell-based generalization of 3d building groups with outlier management. In: Proc. of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems ’07, pp. 1–4 (2007)

    Google Scholar 

  11. Glander, T., Döllner, J.: Techniques for generalizing building geometry of complex virtual 3d city models. In: 2nd International Workshop on 3D Geo-Information, pp. 381–400 (2007)

    Google Scholar 

  12. Gooch, A., Gooch, B., Shirley, P., Cohen, E.: A non-photorealistic lighting model for automatic technical illustration. In: Proc. of SIGGRAPH ’98, pp. 447–452 (1998)

    Chapter  Google Scholar 

  13. Gooch, B., Sloan, P.-P.J., Gooch, A., Shirley, P., Riesenfeld, R.: Interactive technical illustration. In: Proc. of I3D ’99, pp. 31–38 (1999)

    Google Scholar 

  14. Glander, T., Trapp, M., Döllner, J.: A concept of effective landmark depiction in geovirtual 3d environments by view-dependent deformation. In: 4th International Symposium on LBS and Telecartography (2007)

    Google Scholar 

  15. Guttman, A.: R-Trees: a dynamic index structure for spatial searching, pp. 599–609

  16. Isenberg, T., Freudenberg, B., Halper, N., Schlechtweg, S., Strothotte, T.: A developer’s guide to silhouette algorithms for polygonal models. IEEE Comput. Graph. Appl. 23(4), 28–37 (2003)

    Article  Google Scholar 

  17. Jobst, M., Döllner, J.: 3d city model visualization with cartography-oriented design. In: REAL CORP Proc., Vienna, (2008)

    Google Scholar 

  18. Kosara, R., Hauser, H., Gresh, D.L.: An interaction view on information visualization. In: EG 2003, pp. 123–137 (2003)

    Google Scholar 

  19. Kosara, R., Miksch, S., Hauser, H.: Semantic depth of field. In: Proc. of INFOVIS ’01, p. 97 (2001)

    Google Scholar 

  20. Lorenz, H., Trapp, M., Döllner, J.: Interactive multi-perspective views of virtual 3d landscape and city models. In: Lecture Notes in Geoinformation and Cartography’08, pp. 301–321 (2008)

    Google Scholar 

  21. Mayer, H.: Scale-space events for the generalization of 3d-building data. In: International Archives of Photogrammetry and Remote Sensing, pp. 639–646 (1999)

    Google Scholar 

  22. Möser, S., Degener, P., Wahl, R., Klein, R.: Context aware terrain visualization for wayfinding and navigation. Comput. Graph. Forum 27(7), 1853–1860 (2008)

    Article  Google Scholar 

  23. Qu, H., Wang, H., Cui, W., Wu, Y., Chan, M.-Y.: Focus+context route zooming and information overlay in 3d urban environments. IEEE Trans. Vis. Comput. Graph. 15(6), 1547–1554 (2009)

    Article  Google Scholar 

  24. Rheingans, P., Landreth, C.: Perceptual principles for effective visualizations. In: Perceptual Issues in Visualisation, pp. 59–74 (1995)

    Chapter  Google Scholar 

  25. Straber, W., Stoev, S.L., Schmalstieg, D.: The through-the-lens metaphor: taxonomy and application. In: Proc. of the IEEE Virtual Reality, pp. 285–286 (2002)

    Google Scholar 

  26. Semmo, A., Trapp, M., Kyprianidis, J.E., Döllner, J.: Interactive visualization of generalized virtual 3d city models using level-of-abstraction transitions. Comput. Graph. Forum 31(3), 885–894 (2012)

    Article  Google Scholar 

  27. Trapp, M., Glander, T., Buchholz, H., Döllner, J.: 3d generalization lenses for interactive focus + context visualization of virtual city models. In: Proc. of InfoVis’08, pp. 225–230 (2008)

    Google Scholar 

  28. Thiemann, F.: Generalization of 3d building data. In: Proc. of Joint International Symposium on GeoSpatial Theory, Processing and Applications, pp. 225–230 (2002)

    Google Scholar 

Download references

Acknowledgements

This research is supported by National Basic Research Program of China (973 Program, No. 2009CB320802), National Natural Science Foundation of China (Nos. 60970020, 60873123), Foundation of Liaoning Educational Committee (No. L2012131), Research Award Fund of Shandong Province, China (No. BS2012DX043), and the Fundamental Research Funds for the Central Universities (No. 201313005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, B., Zhao, Y., Guo, X. et al. Perception-motivated visualization for 3D city scenes. Vis Comput 29, 277–286 (2013). https://doi.org/10.1007/s00371-012-0773-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0773-1

Keywords

Navigation