Skip to main content
Log in

Three robust features extraction approaches for facial gender classification

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This research paper introduces three robust approaches for features extraction for gender classification. The first approach is based on using Discrete Cosine Transform (DCT) and consists of two different methods for calculating features values. The second approach is based on the extraction of texture features using the gray-level cooccurrence matrix (GLCM). The third approach is based on 2D-wavelet transform. The extracted features vectors are classified using SVM. For precise evaluation, the databases used for gender evaluation are based on images from the AT@T, Faces94, UMIST, and color FERET databases. K-fold cross validation is used in training the SVM. The accuracies of gender classification when using one of the two proposed DCT methods for features extraction are 98.6 %, 99.97 %, 99.90 %, and 93.3 % with 2-fold cross validation, and 98.93 %, 100 %, 99.9 %, and 92.18 % with 5-fold cross validation. The accuracies of GLCM texture features approach for facial gender classification are 98.8 %, 99.6 %, 100 %, and 93.11 %, for AT@T, Faces94, UMIST, and FERET, databases. The accuracies for all databases when using 2D-WT are ranging between 96.18 % and 99.6 % except FERET and its accuracy is 92 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brunelli, R., Poggio, T.: HyberBF networks for gender classification. In: Proc. DARPA Image Understanding Workshop, pp. 311–314 (1992)

    Google Scholar 

  2. Burton, A.M., Bruce, V., Dench, N.: What’s the difference between men and women? Evidence from facial measurement. Perception 22(2), 153–176 (1993)

    Article  Google Scholar 

  3. Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)

    Article  Google Scholar 

  4. Baluja, S., Rowley, H.: Boosting sex identification performance. Int. J. Comput. Vis. 7(11) (2007)

  5. Jain, A., Huang, J.: Integrating independent components and linear discriminant analysis for gender classification. In: FGR, pp. 159–163 (2004)

    Google Scholar 

  6. Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: a comparison study. In: WACV, pp. 165–170 (2002)

    Google Scholar 

  7. Lu, H., Huang, Y., Chen, Y., Yang, D.: Automatic gender classification based on pixel-pattern-based texture feature. J. Real-Time Image Process. 3, 109–116 (2008)

    Article  Google Scholar 

  8. Zafeiriou, S., Tefas, A., Pitas, I.: Gender determination using a support vector machine variant. In: 16th European Signal Processing Conference (EUSIPCO2008), Lausanne, Switzerland (2008)

    Google Scholar 

  9. Lian, H.-C., Lu, B.-L., Takikawa, E., Hosoi, S.: Gender classification using a min–max modular support vector machine. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. Lecture Notes in Computer Science, vol. 3611, pp. 433–436. Springer, Berlin (2005)

    Google Scholar 

  10. Xu, Z., Lu, L., Shi, P.: A hybrid approach to gender classification from face images. In: 19th International Conference on Pattern Classification (ICPR), pp. 1–4 (2008)

    Google Scholar 

  11. kinen E, M., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008)

    Article  Google Scholar 

  12. Mayo, M., Zhang, E.: Improving face gender classification by adding deliberately misaligned faces to the training data. In: IVCNZ08, pp. 1–5 (2008)

    Google Scholar 

  13. Wu, J., Smith, W.A.P., Hancock, E.R.: Facial gender classification using shape-from-shading. Image Vis. Comput. 28, 1039–1048 (2010)

    Article  Google Scholar 

  14. Lu, A.A.: Gender classification: a multiscale decision fusion approach. Pattern Class. Lett. 31, 1422–1427 (2010)

    Article  Google Scholar 

  15. Lin, G.-S., Zhao, Y.-J.: A feature-based gender classification method based on color information”. In: IEEE Computer Society First International Conference on Robot, Vision and Signal Processing, pp. 40–43 (2011)

    Google Scholar 

  16. Zheng, J., Lu, B.-L.: A support vector machine classifier with automatic confidence and its application to gender classification. Neurocomputing 74, 1926–1935 (2011)

    Article  Google Scholar 

  17. Wang, C.-x., Liu, Y., Li, Z.-y.: Algorithm research of face image gender classification based on 2-d Gabor wavelet transform and SVM. In: International Symposium on Computer Science and Computational Technology, pp. 312–315. IEEE Comput. Society, Los Alamitos (2008)

    Google Scholar 

  18. Özbudak, O., Kircı, O., Çakir, M., Güneş, E.O.: Effects of the facial and racial features on gender classification. In: 15th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 26–29 (2010)

    Google Scholar 

  19. Guo, J.-M., Lin, C.-C., Nguyen, H.-S.: Face gender classification using improved appearance-based average face difference and support vector machine. In: International Conference on System Science and Engineering, pp. 637–640 (2010)

    Google Scholar 

  20. Ozbudak, O., Tukel, M., Seker, S.: Fast gender classification. computational intelligence and computing research (ICCIC). In: IEEE International Conference, pp. 1–5 (2010)

    Google Scholar 

  21. Jabid, T.H.K., Oksam Chae, M.: Gender classification using local directional pattern (LDP). In: 20th International Conference on Pattern Classification (ICPR), pp. 2162–2165 (2010)

    Google Scholar 

  22. Mozaffari, S., Behravan, H., Akbari, R., Gender, .: Classification using single frontal image per person: combination of appearance and geometric based features. In: 20th International Conference on Pattern Classification (ICPR), pp. 1192–1195 (2010)

    Google Scholar 

  23. Andreu, Y., Mollineda, R.A.: On the Complementarity of Face Parts for Gender Classification. Springer, Berlin (2008).

    Google Scholar 

  24. http://cswww.essex.ac.uk/mv/allfaces/faces94.html

  25. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf, Apr 15, 2010

  26. Hussain, M., Wajid, S.K., Elzaart, A., Berbar, M.: A comparison of SVM kernel functions for breast cancer detection. In: Eighth International Conference Computer Graphics, Imaging and Visualization, pp. 145–150. IEEE Comput. Society, Los Alamitos (2011)

    Google Scholar 

  27. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face classification algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  28. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J., FERET, T.: Evaluation methodology for face classification algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

    Article  Google Scholar 

  29. Berbar, M.A.: Faces and Eyes Detection Based on HSL and R color component and SVM in Facial images. Egypt. Comput. Sci. J. 36(1), 1110-2586 (2012)

    Google Scholar 

  30. Burges, C.J.C.: A tutorial on support vector machines for pattern classification. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  31. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf, Apr 15 (2010)

  32. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, Sarasota FL, December (1994)

    Google Scholar 

  33. Haralick, R.M.: Statistical and structural approaches to texture. In: Proceedings of the IEEE, vol. 67(5), pp. 786–804 (1979)

    Google Scholar 

  34. Haralick, R., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  MathSciNet  Google Scholar 

  35. Soh, L., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2) (1999)

  36. Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of gray level quantization. Can. J. Remote Sens. 28(1), 45–62 (2002)

    Article  Google Scholar 

  37. Soyel, H., Demirel, H.: Facial expression recognition based on discriminative scale invariant feature transform. Electron. Lett. 46(5), 343–345 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Center of College of Computer and Information Sciences, King Saud University. The author is grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdou Berbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berbar, M.A. Three robust features extraction approaches for facial gender classification. Vis Comput 30, 19–31 (2014). https://doi.org/10.1007/s00371-013-0774-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0774-8

Keywords

Navigation