Skip to main content
Log in

Abstracting images into continuous-line artistic styles

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper focuses on the problem of designing and generating illustrations that portray a given scene with a single non-intersecting line. In this approach, users partition an image into regions, assigning a type or style to each of them. Next, a grid is generated over the drawing space, based on the parameters specified for each region. The illustration is then obtained in the form of a path that covers most areas of the grid. Contrary to previous works, our approach allows users to control the overall flow of the line throughout any given region, by providing the means to define tensor fields per region which directly influence the line orientation. We also extend this work for generating continuous-line paintings, a similar style consisting of a single line that varies in color and thickness while covering the entire drawing space. This is achieved by transforming drawings obtained with the above-mentioned approach through a Voronoi-based strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)

    Article  Google Scholar 

  2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)

    Google Scholar 

  3. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: Concorde TSP solver (2011). http://www.tsp.gatech.edu/concorde/index.html

  4. Bosch, R., Herman, A.: Continuous line drawings via the traveling salesman problem. Oper. Res. Lett. 32(4), 302–303 (2004)

    Article  MATH  Google Scholar 

  5. CGAL: Cgal, Computational Geometry Algorithms Library (2012). http://www.cgal.org

  6. Chi, M.T., Lee, T.Y., Qu, Y., Wong, T.T.: Self-animating images: illusory motion using repeated asymmetric patterns. ACM Trans. Graph. 27(3), 62:1–62:8 (2008)

    Article  Google Scholar 

  7. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Xu, Y.Q.: Color harmonization. ACM Trans. Graph. 25(3), 624–630 (2006)

    Article  Google Scholar 

  8. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann, San Francisco (2008)

    Google Scholar 

  9. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973)

    Article  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1990)

    Google Scholar 

  11. Granger, G.: EOL B-spline Library (2009). http://www.eol.ucar.edu/homes/granger/bspline/doc/

  12. Huang, L., Wan, G., Liu, C.: An improved parallel thinning algorithm. In: ICDAR ’03: Proceedings of the 7th International Conference on Document Analysis and Recognition, p. 780. IEEE Computer Society, Washington (2003)

    Chapter  Google Scholar 

  13. Jobard, B., Lefer, W.: Creating evenly-spaced streamlines of arbitrary density. In: Proceedings of the 8th Eurographics Workshop on Visualization in Scientific Computing, pp. 45–55 (1997)

    Google Scholar 

  14. Kang, H., Lee, S., Chui, C.K.: Flow-based image abstraction. IEEE Trans. Vis. Comput. Graph. 15(1), 62–76 (2009)

    Article  Google Scholar 

  15. Kaplan, C.S., Bosch, R.: TSP art. In: Proceedings of Bridges 2005, Mathematical Connections in Art, Music and Science, pp. 301–308 (2005)

    Google Scholar 

  16. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Trans. Graph. 23(3), 303–308 (2004)

    Article  Google Scholar 

  17. Maharik, R., Bessmeltsev, M., Sheffer, A., Shamir, A., Carr, N.: Digital micrography. ACM Trans. Graph. 30(4), 100:1–100:12 (2011)

    Article  Google Scholar 

  18. Morales, J.E.: Virtual Mo (2005). http://www.virtualmo.com/

  19. O’Donovan, P., Hertzmann, A.: Anipaint: interactive painterly animation from video. IEEE Trans. Vis. Comput. Graph. 18(3), 475–487 (2012)

    Article  Google Scholar 

  20. Okamoto, Y., Uehara, R.: How to make a picturesque maze. In: CCCG, pp. 137–140 (2009)

    Google Scholar 

  21. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27(3), 92:1–92:8 (2008)

    Article  Google Scholar 

  22. Pedersen, H., Singh, K.: Organic labyrinths and mazes. In: NPAR ’06: Proceedings of the 4th International Symposium on Non-Photorealistic Animation and Rendering, pp. 79–86. ACM, New York (2006)

    Chapter  Google Scholar 

  23. Pullen, W.D.: Think labyrinth (2008). http://www.astrolog.org/labyrnth.htm

  24. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1(3), 244–256 (1972)

    Article  Google Scholar 

  25. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  26. Slater, G.: Geoff Slater—the kilted, single line artist (2001). http://www.geoffslater.com/

  27. Wan, L., Liu, X., Wong, T.T., Leung, C.S.: Evolving mazes from images. IEEE Trans. Vis. Comput. Graph. 16(2), 287–297 (2010)

    Article  Google Scholar 

  28. Wong, F.J., Takahashi, S.: Flow-based automatic generation of hybrid picture mazes. Comput. Graph. Forum 28(7), 1975–1984 (2009)

    Article  Google Scholar 

  29. Wong, F.J., Takahashi, S.: A graph-based approach to continuous line illustrations with variable levels of detail. Comput. Graph. Forum 30(7), 1931–1939 (2011)

    Article  Google Scholar 

  30. Xu, J., Kaplan, C.S.: Image-guided maze construction. ACM Trans. Graph. 26(3), 29 (2007)

    Article  Google Scholar 

  31. Zhang, E., Hays, J., Turk, G.: Interactive tensor field design and visualization on surfaces. IEEE Trans. Vis. Comput. Graph. 13(1), 94–107 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the participants in our preliminary user study for helping us in this algorithm formulation. This research has been partially supported by Japan Society for the Promotion of Science under Grants-in-Aid for Scientific Research (B) No. 21300033, and Challenging Exploratory Research No. 23650042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, F.J., Takahashi, S. Abstracting images into continuous-line artistic styles. Vis Comput 29, 729–738 (2013). https://doi.org/10.1007/s00371-013-0809-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0809-1

Keywords

Navigation