Skip to main content
Log in

Co-segmentation of 3D shapes via multi-view spectral clustering

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Co-segmentation of 3D shapes in the same category is an intensive topic in computer graphics. In this paper, we present an unsupervised method to segment a set of meshes into corresponding parts in a consistent manner. Given the over-segmented patches as input, the co-segmentation result is generated by grouping them. In contrast to the previous method, we formulate the problem as a multi-view spectral clustering task by co-training a set of affinity matrices derived from different shape descriptors. For each shape descriptor, the affinity matrix is constructed via combining low-rankness and sparse representation. The integration of multiple features makes our method tolerate the large geometry and topology variations among the 3D meshes in a set. Moreover, the low-rank and sparse representation can capture not only the global structure but also the local relationship, which demonstrate robust to outliers. The experimental results show that our approach successfully segments each category in the benchmark dataset into corresponding parts and generates more reliable results compared with the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chaudhuri, S., Kalogerakis, E., Guibas, L., Koltun, V.: Probabilistic reasoning for assembly-based 3d modeling. ACM Trans. Graph. 30, 35 (2011)

    Article  Google Scholar 

  2. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29(4), 102 (2010)

    Article  Google Scholar 

  3. Shalom, S., Shapira, L., Shamir, A., Cohen-Or, D.: Part analogies in sets of objects. In: Eurographics Workshop on 3D Object Retrieval (2008)

    Google Scholar 

  4. Hu, R., Fan, L., Liu, L.: Co-segmentation of 3D shapes via subspace clustering. Comput. Graph. Forum 31, 1703–1713 (2012)

    Article  Google Scholar 

  5. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., Cohen-Or, D.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30(6), 126 (2011)

    Article  Google Scholar 

  6. Meng, M., Xia, J., Luo, J., He, Y.: Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization. Comput.-Aided Des. (2012). doi:10.1016/j.cad.2012.10.014

    Google Scholar 

  7. Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., Chen, B.: Active co-analysis of a set of shapes. ACM Trans. Graph. 31(6), 165 (2012)

    Article  Google Scholar 

  8. Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognit. 34(12), 2259–2281 (2001)

    Article  MATH  Google Scholar 

  9. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100 (1998)

    Chapter  Google Scholar 

  10. Kumar, A., Daumé, H. III: A co-training approach for multi-view spectral clustering. In: International Conference on Machine Learning (2011)

    Google Scholar 

  11. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28(3), 73 (2009)

    Article  Google Scholar 

  12. Kreavoy, V., Julius, D., Sheffer, A.: Model composition from interchangeable components. In: 15th Pacific Conference on Computer Graphics and Applications PG’07, pp. 129–138 (2007)

    Chapter  Google Scholar 

  13. Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. ACM Trans. Graph. 30, 125 (2011)

    Google Scholar 

  14. Golovinskiy, A., Funkhouser, T.: Consistent segmentation of 3D models. Comput. Graph. 33(3), 262–269 (2009)

    Article  Google Scholar 

  15. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., Cheng, Z.Q.: Style-content separation by anisotropic part scales. ACM Trans. Graph. 29, 184 (2010)

    Google Scholar 

  16. Van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., Hamarneh, G.: Prior knowledge for part correspondence. Comput. Graph. Forum 30, 553–562 (2011)

    Article  Google Scholar 

  17. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings of Ninth IEEE International Conference on Computer Vision, pp. 10–17 (2003)

    Chapter  Google Scholar 

  18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  19. Cheng, B., Yang, J., Yan, S., Fu, Y., Thomas, S.: Learning with l1-graph for image analysis. IEEE Trans. Image Process. 19(4), 858–866 (2010). PMID: 20031500

    Article  MathSciNet  Google Scholar 

  20. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proceedings of the 26th International Conference on Machine Learning (ICML) (2010)

    Google Scholar 

  21. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge (2004)

    MATH  Google Scholar 

  22. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. Math. Program. (2009). doi:10.1016/j.jsb.2012.10.010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuangzhi Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, P., Wu, Z., Xia, C. et al. Co-segmentation of 3D shapes via multi-view spectral clustering. Vis Comput 29, 587–597 (2013). https://doi.org/10.1007/s00371-013-0824-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0824-2

Keywords

Navigation