Skip to main content
Log in

Markov-Type Vector Field for endless surface animation of water stream

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a hybrid (physical-stochastic) model of surface element (surfel) fluctuations for the visual simulation of an endlessly running water surface. This model comprises two main phases: preprocessing and endless animation phases. First, we simulate a physics-based method for a specific period of time during the preprocessing phase. We construct a stochastic vector field in the simulation, referred to as a Markov-Type Vector Field (MTVF), using only the surface values of the fluid flow. Next, we import the MTVF data into the main endless animation phase and create a surface fluctuation animation by surfels and temporary velocity field modeling of the MTVF using a random sample. In our approach, the surfel edges that cover the fluid flow domain are transferred simply via a temporary single velocity and the new flow surface is determined directly based on their positions. MTVF allows us to generate a water surface animation endlessly in real time without the time-consuming processes of solving the corresponding physical equations. We describe the MTVF construction method and the endless surface animation steps, as well as present the results of experiments that demonstrate the plausibility of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Fig. 5
Algorithm 3
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burrell, T., Arnold, D., Brooks, S.: Advected river textures. Comput. Animat. Virtual Worlds 20(2–3), 163–173 (2009)

    Article  Google Scholar 

  2. Chentanez, N., Muller, M.: Real-time simulation of large bodies of water with small scale details. In: Proc. of ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation (2010)

    Google Scholar 

  3. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 736–744 (2002)

    Article  Google Scholar 

  4. Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH ’01: Proc. of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30 (2001)

    Chapter  Google Scholar 

  5. Glassner, A.S.: Duck! IEEE Comput. Graph. Appl. 22(4), 88–97 (2002)

    Article  Google Scholar 

  6. Bridson, R., Houriham, J., Nordenstam, M.: Curl-noise for procedural fluid flow. ACM Trans. Graph. 26(3), 26 (2007)

    Article  Google Scholar 

  7. Kipfer, P., Westermann, R.: Realistic and interactive simulation of rivers. In: Proc. of the Conference on Graphics Interface, vol. 137, pp. 41–48 (2006)

    Google Scholar 

  8. Koshizuka, S., Tamako, H., Oka, Y.: Particle method for incompressible viscous flow with fluid fragmentation. Comput. Fluid Dyn. J. 4, 29–46 (1995)

    Google Scholar 

  9. Koshizuka, S., Oka, Y.: Moving particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123, 421–434 (1996)

    Google Scholar 

  10. Marcelo, M.M., Fujimoto, T., Chiba, N.: Efficient animation of water flow on irregular terrains. In: GRAPHITE Uf06, pp. 107–115 (2006)

    Google Scholar 

  11. Monaghan, J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  12. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’03, pp. 154–159 (2003)

    Google Scholar 

  13. Neyret, F., Praizelin, N.: Phenomenological simulation of brooks. In: Proc. Eurographics Workshop on Computer Animation and Simulation, pp. 53–64 (2001)

    Google Scholar 

  14. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  15. Nugjgar, P., Fujimoto, T., Chiba, N.: Markov-type velocity field designed for endless animation of water stream. In: Proceedings of CGI2011 Conf., Fluid and Effects Simulation Session, Paper No. 4, Ottawa University, Canada, June (2011)

    Google Scholar 

  16. Nugjgar, P., Fujimoto, T., Chiba, N.: Markov-type velocity field for efficiently animating water stream. Vis. Comput. 28(2), 219–229 (2012)

    Article  Google Scholar 

  17. Perlin, K.: An image synthesizer. In: Proc. SIGGRAPH, pp. 287–296 (1985)

    Google Scholar 

  18. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., Whitaker, R.T.: Particle-based simulation of fluids. Eurographics 22(3), 401–410 (2003)

    Google Scholar 

  19. Reeves, W.T.: Particle systems—a technique for modeling a class of fuzzy objects. Comput. Graph. 17(3), 359–376 (1983)

    Article  Google Scholar 

  20. Shi, S., Ye, X., Dong, Z., Zhang, Y.: Real-time simulation of large-scale dynamic river water. Simul. Model. Pract. Theory 15(6), 635–646 (2007)

    Article  Google Scholar 

  21. Stam, J.: Stable fluids. In: SIGGRAPH ’99: Proc. of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128 (1999)

    Chapter  Google Scholar 

  22. Tessendorf, J.: Simulating ocean water. In: SIGGRAPH 2004 Course Notes 31 (2004)

    Google Scholar 

  23. Thon, S., Ghazanfarpour, D.: Real-time animation of running waters based on spectral analysis of Navier–Stokes equations. In: Proc. of Computer Graphics International, pp. 333–346 (2002)

    Google Scholar 

  24. Thürey, N., Rüde, U., Stamminger, M.: Animation of open water phenomena with coupled shallow water and free surface simulation. In: Proceedings of the 2006 Eurographics/ACM SIGGRAPH Symposium on Computer Animation. Eurographics Association, Goslar (2006)

    Google Scholar 

  25. Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: Scalable real-time animation of rivers. Comput. Graph. Forum 28(2), 239–248 (2009)

    Article  Google Scholar 

  26. Yu, Q., Neyret, F., Neyret, F., Steed, A.: Feature-based vector simulation of water waves. Comput. Animat. Virtual Worlds 22, 91–98 (2011)

    Article  Google Scholar 

  27. Yuksel, C., House, D.H., Keyser, J.: Wave particles. ACM Trans. Graph. 26 (2007)

  28. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24, 965–972 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purevtsogt Nugjgar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nugjgar, P., Chiba, N. Markov-Type Vector Field for endless surface animation of water stream. Vis Comput 29, 959–968 (2013). https://doi.org/10.1007/s00371-013-0851-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0851-z

Keywords

Navigation