Skip to main content
Log in

Depth manipulation using disparity histogram analysis for stereoscopic 3D

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The importance of post-production for stereoscopic 3D is increasing rapidly. In particular, depth manipulation is essential, as there are many situations in which the captured depth requires further adjustment. Nonlinear disparity mapping has been a popular choice for efficient depth manipulation. However, most existing work requires users to have a deep understanding of how stereo works. This paper proposes a novel and very intuitive-to-use nonlinear disparity mapping technique. A commonly used multirigging technique inspired this work. Specifically, our method creates multiple depth layers using the Gaussian Mixture Model (GMM) and a histogram analysis. The depth position and volume are then manipulated with simple parameters at each layer individually, achieving complex nonlinearity in terms of depth control. The employed optimization scheme ensures the preservation of the original depth order. A user study shows that our method is very easy to use and simple to control. We demonstrate the versatility of our method with various practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bleyer, M., Rother, C., Kohli, P., Scharstein, D., Sinha, S.N.: Object stereo—joint stereo matching and object segmentation. In: CVPR, pp. 3081–3088. IEEE Press, New York (2011)

    Google Scholar 

  2. Chang, C.H., Liang, C.K., Chuang, Y.Y.: Content-aware display adaptation and interactive editing for stereoscopic images. IEEE Trans. Multimed. 13(4), 589–601 (2011)

    Article  Google Scholar 

  3. Dejohn, M., Drees, W., Seigle, D., Susinno, J.: Stereoscopic geometry of 3d presentations. Second in a series of technical report from In-three (2007)

  4. Du, S., Hu, S., Martin, R.: Changing perspective in stereoscopic images (2013)

  5. Engle, R.: Beowulf 3d: a case study. Proc. SPIE 6803, 68030R (2008)

    Article  Google Scholar 

  6. Foundry, T.: Nuke: a commercial compositing software (2011)

  7. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Addison-Wesley Longman, Boston (2001)

    Google Scholar 

  8. Iyer, K., Chari, M., Kannan, H.: A novel approach to depth image based rendering based on non-uniform scaling of depth values. In: Second International Conference on Future Generation Communication and Networking Symposia, FGCNS ’08, vol. 3, pp. 31–34 (2008)

    Chapter  Google Scholar 

  9. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  10. Kim, J.: Personal Communication with Junghee, Kim, Chief Stereographer, Kaistudio (2012)

  11. Kim, Y., Jung, H., Choi, S., Lee, J., Noh, J.: A single image representation model for efficient stereoscopic image creation. Comput. Graph. Forum 30, 2067–2076 (2011)

    Article  Google Scholar 

  12. Lamberti, F., Montrucchio, B., Sanna, A.: Cmbfhe: a novel contrast enhancement technique based on cascaded multistep binomial filtering histogram equalization. IEEE Trans. Consum. Electron. 52(3), 966–974 (2006)

    Article  Google Scholar 

  13. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., Gross, M.: Nonlinear disparity mapping for stereoscopic 3d. ACM Trans. Graph. 29(4), 75 (2010)

    Article  Google Scholar 

  14. Lipton, L.: Foundations of the Stereoscopic Cinema: A Study in Depth. Van Nostrand Reinhold, New York (1982)

    Google Scholar 

  15. Lo, W., van Baar, J., Knaus, C., Zwicker, M., Gross, M.: Stereoscopic 3d copy & paste. In: ACM SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA’10, pp. 147:1–147:10. ACM, New York (2010)

    Google Scholar 

  16. Luo, S.J., Shen, I., Chen, B.Y., Cheng, W.H., Chuang, Y.Y., et al.: Perspective-aware warping for seamless stereoscopic image cloning. ACM Trans. Graph. 31(6), 182 (2012)

    Google Scholar 

  17. Mendiburu, B.: 3d Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press/Elsevier, Amsterdam (2009)

    Google Scholar 

  18. Neuman, R.: Bolt 3d: a case study. Proc. SPIE 7237, 72370F (2009)

    Article  Google Scholar 

  19. Niu, Y., Feng, W.C., Liu, F.: Enabling warping on stereoscopic images. ACM Trans. Graph. 31(6), 183 (2012)

    Article  Google Scholar 

  20. Scharstein, D., Szeliski, R.: An evaluation of dense two-frame stereo algorithms (2002). URL vision.middlebury.edu/stereo/

  21. Smith, B.M., Zhang, L., Jin, H.: Stereo matching with nonparametric smoothness priors in feature space. In: CVPR’09, pp. 485–492 (2009)

    Google Scholar 

  22. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(9), 889–896 (2000)

    Article  Google Scholar 

  23. Tong, R.f., Zhang, Y., Cheng, K., Stereopasting: Interactive composition in stereoscopic images. IEEE Trans. Vis. Comput. Graph. (2012)

  24. Wang, C., Sawchuk, A.A.: Disparity manipulation for stereo images and video. Proc. SPIE 6803, 68031E (2008)

    Article  Google Scholar 

  25. Wang, L., Jin, H., Yang, R., Gong, M.: Stereoscopic inpainting: joint color and depth completion from stereo images. In: CVPR. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  26. Wu, Z., Ware, J., Wilson, I., Zhang, J.: Mechanism analysis of highly overlapped interpolation contrast enhancement. IEE Proc., Vis. Image Signal Process. 153(4), 512–520 (2006)

    Article  Google Scholar 

  27. Yan, T., Lau, R.W., Xu, Y., Huang, L.: Depth mapping for stereoscopic videos. Int. J. Comput. Vis., 1–15 (2013)

  28. Yoon, H., Han, Y., Hahn, H.: Image contrast enhancement based sub-histogram equalization technique without over-equalization noise. Int. J. Electr. Electron. Eng. (2009)

Download references

Acknowledgements

This work was supported by MKE (10040959, Development of Compositing Software Supporting 4K Images).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyong Noh.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 50.9 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kim, Y., Lee, J. et al. Depth manipulation using disparity histogram analysis for stereoscopic 3D. Vis Comput 30, 455–465 (2014). https://doi.org/10.1007/s00371-013-0868-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0868-3

Keywords

Navigation