Skip to main content
Log in

Multilevel mesh simplification

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The goal of a multilevel simplification method is to produce different levels of refinement of a mesh, reducing the resolution (total number of faces), while preserving the original topology and a good approximation to the original geometry. A new approach to simplification based on the evolution of surfaces under p-Laplacian flow is presented. Such an evolution provides a natural geometric clustering process where the spatial effect of the p-Laplacian allows for identifying suitable regions that need to be simplified. The concrete scheme is a multiresolution framework composed, at each simplification level, of a spatial clustering diffusion flow to determine the potential candidates for deletion, followed by an incremental decimation process to update the mesh vertex locations in order to decrease the overall resolution. Numerical results show the effectiveness of our strategy in multilevel simplification of different models with different complexities, in particular for models characterized by sharp features and flat parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Cignoni, P., Montani, C., Scopigno, R.: A comparison of mesh simplification algorithms. Comput. Graph. 22(1), 37–54 (1997)

    Article  Google Scholar 

  2. Luebke, D., Watson, B., Cohen, J., Reddy, M., Varshney, A.: Level of Detail for 3D Graphics. Elsevier, Amsterdam (2002)

    Google Scholar 

  3. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, New York, NY, USA, pp. 209–216. ACM Press/Addison-Wesley, New York (1997)

    Chapter  Google Scholar 

  4. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B.: Polygon Mesh Processing. AK Peters, Wellesley (2010)

    Google Scholar 

  5. Rossignac, J., Borrel, P.: Multi-resolution 3D approximation for rendering complex scenes. In: Falcidieno, B., Kunii, T.L. (eds.) Geometric Modeling in Computer Graphics: Graphics: Methods and Applications, pp. 455–465. Springer, Berlin (1993)

    Google Scholar 

  6. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’93, pp. 19–26 (1993)

    Chapter  Google Scholar 

  7. Bae, E., Weickert, J.: Partial differential equations for interpolation and compression of surfaces. In: Proceedings of the 7th International Conference on Mathematical Methods for Curves and Surfaces, MMCS’08, Berlin, Heidelberg, pp. 1–14. Springer, Berlin (2010)

    Chapter  Google Scholar 

  8. Schroeder, W., Zarge, J., Lorensen, W.: Decimation of triangle meshes. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques. ACM SIGGRAPH Computer Graphics, vol. 26(1), pp. 65–70 (1992)

    Google Scholar 

  9. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pp. 99–108 (1996)

    Chapter  Google Scholar 

  10. Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Computer Graphics Proceedings (SIGGRAPH 99), pp. 325–334 (1999)

    Google Scholar 

  11. Hoppe, H.: New quadric metric for simplifying meshes with appearance attributes. In: Proceedings of the 10th IEEE Visualization 1999 Conference (VIS ’99), VISUALIZATION ’99, pp. 59–66 (1999)

    Google Scholar 

  12. Kim, S., Kim, C., Levin, D.: Surface simplification using a discrete curvature norm. Comput. Graph. 26(5), 657–663 (2002)

    Article  Google Scholar 

  13. Borouchaki, H., Frey, P.: Simplification of surface mesh using Hausdorff envelope. Comput. Methods Appl. Mech. Eng. 194(48–49), 4864–4884 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Oberman, A.: Finite difference methods for the infinity Laplace and p-Laplace equations. Preprint, pp. 1–14, July 2011

  15. Chan, T., Chen, K.: An optimization-based multilevel algorithm for total variation image denoising. Multiscale Model. Simul. 5(2), 615–645 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  17. Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Process. 5(6), 987–995 (1996)

    Article  Google Scholar 

  18. Ng, M.K., Shen, H., Lam, E.Y., Zhang, L.: A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP J. Adv. Signal Process. (2007). doi:10.1155/2007/74585

    Google Scholar 

  19. Huang, Y., Li, R., Liu, W.: Preconditioned descent algorithms for p-Laplacian. J. Sci. Comput. 32(2), 343–371 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ainsworth, M., Kay, D.: The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs. Numer. Math. 82(3), 351–388 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, W., Yan, N.: On quasi-norm interpolation error estimation and a posteriori error estimates for p-Laplacian. SIAM J. Numer. Anal. 40(5), 1780–1895 (2002)

    Google Scholar 

  22. Zhou, D., Scholkopf, B.: A regularization framework for learning from graph data. In: ICML Workshop on Statistical Relational Learning, pp. 132–137 (2004). Other Fields

    Google Scholar 

  23. Zhou, D., Schölkopf, B.: Regularization on discrete spaces. In: Pattern Recognition, pp. 361–368. Springer, Berlin (2005)

    Chapter  Google Scholar 

  24. Bougleux, S., Elmoataz, A., Melkemi, M.: Discrete regularization on weighted graphs for image and mesh filtering. In: International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), pp. 128–139 (2007)

    Chapter  Google Scholar 

  25. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17(7), 1047–1060 (2008)

    Article  MathSciNet  Google Scholar 

  26. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Meyer, M., Desbrun, M., Schröder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57. Springer, Berlin (2003)

    Chapter  Google Scholar 

  28. Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH ’99 Conference Proceedings, pp. 317–324 (1999)

    Google Scholar 

  29. Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form surface design. Comput. Aided Geom. Des. 18, 359–379 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Morigi, S., Rucci, M., Sgallari, F.: Nonlocal surface fairing. In: Third International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), pp. 38–49 (2011)

    Google Scholar 

  31. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab an open-source mesh processing tool. In: Sixth Eurographics Italian Chapter, pp. 129–136 (2008)

    Google Scholar 

  32. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)

    Article  Google Scholar 

  33. Cunderlik, R., Mikula, K., Tunega, M.: Nonlinear diffusion filtering of data on the earth’s surface. J. Geod. 87(2), 143–160 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Morigi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morigi, S., Rucci, M. Multilevel mesh simplification. Vis Comput 30, 479–492 (2014). https://doi.org/10.1007/s00371-013-0873-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0873-6

Keywords

Navigation