Skip to main content
Log in

Modelling and animation of impact and damage with Smoothed Particle Hydrodynamics

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper we present a unique procedure for extending the method of Smoothed Particle Hydrodynamics (SPH) to allow for the simulation of permanently deformable soft-solid materials. SPH has previously been shown to be a computationally and visually effective method for fluid dynamics simulations and recently for modelling the deformation of elastic soft solids. By incorporating new parameters into the procedure, the current research is able to demonstrate a range of visually appealing plasticity and damage scenarios. As SPH is a mesh-free Lagrangian method, data can be manipulated to allow for parallelisation using nVidia’s CUDA platform, as is shown here where simulations are capable of performing at real-time rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31(62), 1–8 (2012)

    Article  Google Scholar 

  2. Becker, M., Ihmsen, M., Teschner, M.: Corotated SPH for deformable solids. In: Proceeding of the Fifth Eurographics Conference on Natural Phenomena, Eurographics Association, pp. 27–34 (2009)

  3. Clavet, S., Beaudoin, P., Poulin, P.: Particle-Based Viscoelastic Fluid Simulation. In: Proceedings of ACM SIGGRAPH, ACM Press/Addison-Wesley Publishing Co., pp. 219–228 (2005)

  4. Desbrun, M., Gascuel, M.-P.: Smoothed particles: a new paradigm for animating highly deformable bodies. In: Computer Animation and Simulation, pp. 61–76. AZ’96. Springer, Berlin (1996)

  5. Desbrun, M., Schröder, P., Barr, A.: Interactive animation of structured deformable objects. Graph. Interface 99, 1–10 (1999)

    Google Scholar 

  6. Gingold, R.A., Monaghan, J.J.: Smoothed Particle Hydro- dynamics—theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

  7. Goswami, P., Schlegel, P., Solenthaler, B., Pajarola, R.: Interactive SPH simulation and rendering on the GPU. In: Proceedings of ACM SIGGRAPH, ACM Press/Addison-Wesley Publishing Co., pp. 55–64 (2010)

  8. Harada, T., Koshizuka, S., Kawaguchi, Y.: Sliced data structure for particle-based simulations on GPUs. In: Proceedings of the Fifth International Conference on Computer Graphics and Interactive Technology in Australia and Southeast, Asia, pp. 55–62 (2007)

  9. Hutchinson, D., Preston, M., Hewitt, T.: Adaptive refinement for mass/spring simulations. In: Computer Animation and Simulations Z96, pp. 31–45. Springer, Berlin (1996)

  10. Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A Parallel SPH Implementation on Multi-core CPUs. Comput. Graph. Forum 30, 99–112 (2011)

    Article  Google Scholar 

  11. Khoei, A., Biabanaki, S., Anahid, M.: Extended finite element method for three-dimensional large plasticity deformations on arbitrary interfaces. Comput. Methods Appl. Mech. Eng. 197, 1100–1114 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, M., Liu, G.: Smoothed Particle Hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)

    Article  MathSciNet  Google Scholar 

  13. Medina, D., Chen, J.: Three-dimensional simulations of impact induced damage in composite structures using the parallelized SPH method. Compos. Part A Appl. Sci. Manuf. 31, 853–860 (2000)

    Article  Google Scholar 

  14. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  15. Monaghan, J.J.: Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  MathSciNet  Google Scholar 

  16. Müller, M., Keiser, R., Nealen A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceeding of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’04). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, pp. 141–151 (2004)

  17. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. In: Proceedings of ACM SIGGRAPH, ACM Press/Addison-Wesley Publishing Co., pp. 471–478 (2005)

  18. O’Brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (TOG) 21, 291–294 (2002)

    Google Scholar 

  19. O’Brien, J. F., Hodgins, J. K.: Graphical modeling and animation of brittle fracture. In: Proceedings of the 26th Annual Conference Computer Graphics and Interactive Technology, ACM Press/Addison-Wesley Publishing Co., pp. 137–146 (1999)

  20. Seungtaik, O., Kim, Y., Roh, B.-S.: Impulse-based rigid body interaction in SPH. Comput. Anim. Virtual Worlds 20, 215–224 (2009)

    Article  Google Scholar 

  21. Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18, 69–82 (2007)

  22. Swegle, J., Hicks, D., Attaway, S.: Smoothed Particle Hydrodynamics stability analysis. J. Comp. Phys. 116, 123–134 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Teschner, M., Heidelberger, B., Müller, M., Pomerantes, D., Gross, M.H.: Optimized Spatial Hashing for collision detection of deformable objects. VMV 3, 47–54 (2003)

    Google Scholar 

Download references

Acknowledgments

The work presented in this paper is supported by the Natural Science and Engineering Research Council of Canada, Collaborative Health Research Project (CHRP-398837-2011) and the Ontario Research Fund: Research Excellent Project (MESSAGES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean LeBlanc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeBlanc, S., Boyer, P. & Joslin, C. Modelling and animation of impact and damage with Smoothed Particle Hydrodynamics. Vis Comput 30, 909–917 (2014). https://doi.org/10.1007/s00371-014-0981-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0981-y

Keywords

Navigation