Skip to main content
Log in

An adaptive edge-preserving image denoising technique using tetrolet transforms

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Denoising has always been one of the standard problems in image processing. It is always desirable to preserve important features, such as edges, corners and other sharp structures, during denoising. Wavelet transforms have been widely used in edge-preserving image denoising since these provide a suitable basis for suppressing noisy signals from the image. This paper presents a novel edge-preserving image denoising technique based on tetrolet transform (a Haar-type wavelet transform) and a locally adaptive thresholding method. The noisy image is decomposed into tetrolet (wavelets) coefficients through a tetrolet transform. A locally adaptive thresholding method exploiting interscale statistical dependency and based on computation of noise level is used to threshold the tetrolet coefficients to effectively reduce noise while preserving relevant features of the original image. Experimental results, compared to other approaches, demonstrate that the proposed method is suitable especially for the natural images contaminated by Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gonzalez, R.C., Woods, R.E.: Digital image processing, 3rd edn. Prentice-Hall, Upper Saddle River (2008)

    Google Scholar 

  2. Jain, P., Tyagi, V.: Spatial and frequency domain filters for restoration of noisy images. IETE J. Educ. 54(2), 108–116 (2013)

    Article  Google Scholar 

  3. Yang, R., Yin, L., Gabbouj, M., Astola, J., Neuvo, Y.: Optimal weighted median filters under structural constraints. IEEE Trans. Signal Process. 43(3), 591–604 (1995)

    Article  Google Scholar 

  4. Hamza, A.B., Luque, P., Martinez, J., Roman, R.: Removing noise and preserving details with relaxed median filters. J. Math. Imaging Vis. 11(2), 161–177 (1999)

    Article  Google Scholar 

  5. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  6. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  7. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of 6th International Conference on Computer Vision, Bombay, pp. 839–846 (1998)

  8. Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image Process. 11(10), 1141–1151 (2002)

    Article  MathSciNet  Google Scholar 

  9. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  10. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high dynamic range images. ACM Trans. Graph. 2(3), 257–266 (2002)

  11. Paris, S., Durand, F.: A fast approximation of the bilateral filter using signal processing approach. In: Proceeding European Conference on Computer Vision, pp. 568–580 (2006)

  12. Porikli, F.: Constant time O(1) bilateral filtering. In: Proceeding IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, pp. 1–8 (2008)

  13. Yang, Q., Tan, K.H., Ahuja, N.: Real-time O(1) bilateral filtering. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Miami, pp. 557–564 (2009)

  14. He, K., Sun, J., Tang, X.: Guided image filtering. In: Proceedings European Conference on Computer Vision, pp. 1–14 (2010)

  15. Qiu, T., Wang, A., Yu, N., Song, A.: LLSURE: local linear sure-based edge-preserving image filtering. IEEE Trans. Image Process. 22(1), 80–90 (2013)

    Article  MathSciNet  Google Scholar 

  16. Egiazarian, K., Astola, J., Helsingius, M., Kuosmanen, P.: Adaptive denoising and lossy compression of images in transform domain. J. Electr. Imaging 8(3), 233–245 (1999)

    Article  Google Scholar 

  17. Buades, A., Coll, B., Morel Song, J.M.: A review of image denoising algorithms, with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  Google Scholar 

  18. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3D filtering. In: SPIE electronic imaging: algorithms and systems, vol. 6064, pp. 606414-1–606414-12 (2006)

  19. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2013)

    Article  MathSciNet  Google Scholar 

  20. Orchard, J., Ebrahimi, M., Wong, A.: Efficient nonlocal-means denoising using the SVD. In: Proceedings IEEE International Conference on Image Processing, San Diego, pp. 1732–1735 (2008)

  21. Weyrich, N., Warhola, G.T.: Wavelet shrinkage and generalized cross validation for image denoising. IEEE Trans. Image Process. 7(1), 82–90 (1998)

    Article  Google Scholar 

  22. Nason, G.P.: Wavelet shrinkage by cross-validation. J. Royal Stat. Soci. B 58, 463–479 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chipman, H., Kolaczyk, E., McCulloc, R.: Adaptive Bayesian wavelet shrinkage. J. Am. Stat. Assoc. 440(92), 1413–1421 (1997)

    Article  Google Scholar 

  26. Chang, S., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vidakovic, B.: Nonlinear wavelet shrinkage with bayes rules and bayes factors. J. Am. Stat. Assoc. 93(441), 173–179 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gao, H.Y., Bruce, A.G.: WaveShrink with firm shrinkage. Stat. Sinica 7, 855–874 (1997)

    MATH  MathSciNet  Google Scholar 

  30. Gao, H.Y.: Wavelet shrinkage denoising using the nonnegative garrote. J. Comput. Graph. Stat. 7(4), 469–488 (1998)

    Google Scholar 

  31. Antoniadis, A., Fan, J.: Regularization of wavelet approximations. J. Am. Stat. Assoc. 96(455), 939–967 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50(11), 2744–2756 (2002)

    Article  Google Scholar 

  33. Sendur, L., Selesnick, I.W.: Bivariate shrinkage with local variance estimation. IEEE Signal Process. Lett. 9(12), 438–441 (2002)

    Article  Google Scholar 

  34. Blu, T., Luisier, F.: The SURE-LET approach to image denoising. IEEE Trans. Image Process. 16(11), 2778–2786 (2007)

    Article  MathSciNet  Google Scholar 

  35. Krommweh, J.: Tetrolet transform: a new adaptive Haar wavelet algorithm for sparse image representation. J. Vis. Commun. Image Represent. 21(4), 364–374 (2010)

    Article  Google Scholar 

  36. Silva, R.D., Minetto, R., Schwartz, W.R., Pedrini, H.: Adaptive edge-preserving image denoising using wavelet transforms. Pattern Analysis and Applications. Springer, Berlin (2012). doi:10.1007/s10044-012-0266-x

  37. Chang, S., Yu, B., Vetterli, M.: Spatially adaptive wavelet thresholding based on context modeling for image denoising. IEEE Trans. Image Process. 9(9), 1522–1531 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Yuan, X., Buckles, B.: Subband noise estimation for adaptive wavelet shrinkage. In: Proceeding 17th International Conference on Pattern Recognition, vol. 4, pp 885–888 (2004)

  39. Luo, G.: Fast wavelet image denoising based on local variance and edge analysis. Int. J. Intell. Technol. 1(2), 165–175 (2006)

    Google Scholar 

  40. Breukelaar, R., Demaine, E., Hohenberger, S., Hoogeboom, H., Kosters, W., Liben-Nowell, D.: Tetris is hard, even to approximate. Int. J. Comput. Geom. Appl. 14(1–2), 41–68 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. http://decsai.ugr.es/cvg/CG/base.htm. Accessed 10 Dec 2012

  42. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

  43. Pratt, W.: Digital image processing, 4th edn. Wiley, New York (2007)

    Book  MATH  Google Scholar 

  44. Singh, M.K.: Denoising of natural images using the wavelet transform. Master’s theses, SJSU Scholar Works, San Jose State University, USA (2010)

  45. Li, C.L., Sun, J.X., Kang, Y.H.: A new algorithm for image denoising based on tetrolet transform. In: Proceeding of SPIE, vol. 7820, International Conference on Image Processing and Pattern Recognition in Industrial Engineering (2010) doi:10.1117/12.866702

  46. Zhang, Y., Li, C., Jia, J.: Image denoising using an improved bivariate threshold function in tetrolet domain (2013)

  47. Dai, L., Zhang, Y., Li, Y.: Image denoising using BM3D combining tetrolet prefiltering. Inf. Technol. J. 12(10), 1995–2001 (2013)

    Article  Google Scholar 

  48. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Tyagi, V. An adaptive edge-preserving image denoising technique using tetrolet transforms. Vis Comput 31, 657–674 (2015). https://doi.org/10.1007/s00371-014-0993-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0993-7

Keywords

Navigation