Skip to main content
Log in

Volume preserving viscoelastic fluids with large deformations using position-based velocity corrections

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose a particle-based hybrid method for simulating volume preserving viscoelastic fluids with large deformations. Our method combines smoothed particle hydrodynamics (SPH) and position-based dynamics (PBD) to approximate the dynamics of viscoelastic fluids. While preserving their volumes using SPH, we exploit an idea of PBD and correct particle velocities for viscoelastic effects not to negatively affect volume preservation of materials. To correct particle velocities and simulate viscoelastic fluids, we use connections between particles which are adaptively generated and deleted based on the positional relations of the particles. Additionally, we weaken the effect of velocity corrections to address plastic deformations of materials. For one-way and two-way fluid-solid coupling, we incorporate solid boundary particles into our algorithm. Several examples demonstrate that our hybrid method can sufficiently preserve fluid volumes and robustly and plausibly generate a variety of viscoelastic behaviors, such as splitting and merging, large deformations, and Barus effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31(4), 62:1–62:8 (2012)

  2. Becker, M., Ihmsen, M., Teschner, M.: Corotated SPH for deformable solids. In: Proceedings of the Fifth Eurographics Conference on Natural Phenomena, pp. 27–34 (2009)

  3. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)

  4. Bender, J., Müller, M., Otaduy, M.A., Teschner, M.: Position-based methods for the simulation of solid objects in computer graphics. In: EUROGRAPHICS 2013 State of the Art Reports, pp. 1–22 (2013)

  5. Bodin, K., Lacoursiere, C., Servin, M.: Constraint fluids. IEEE Trans. Vis. Comput. Graph. 18(3), 516–526 (2012)

    Article  Google Scholar 

  6. Chang, Y., Bao, K., Liu, Y., Zhu, J., Wu, E.: A particle-based method for viscoelastic fluids animation. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pp. 111–117 (2009)

  7. Clavet, S., Beaudoin, P., Poulin, P.: Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 219–228 (2005)

  8. Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerszewski, D., Bhattacharya, H., Bargteil, A.W.: A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 133–138 (2009)

  10. He, X., Liu, N., Li, S., Wang, H., Wang, G.: Local poisson SPH for viscous incompressible fluids. Comput. Graph. Forum 31(6), 1948–1958 (2012)

    Article  MathSciNet  Google Scholar 

  11. Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel SPH implementation on multi-core CPUs. Comput. Graph. Forum 30(1), 99–112 (2011)

    Article  Google Scholar 

  12. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 20(3), 426–435 (2014)

    Article  Google Scholar 

  13. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner, M.: SPH fluids in computer graphics. In: EUROGRAPHICS 2014 State of the Art Reports, pp. 21–42 (2014)

  14. Jones, B., Ward, S., Jallepalli, A., Perenia, J., Bargteil, A.W.: Deformation embedding for point-based elastoplastic simulation. ACM Trans. Graph. 33(2), 21:1–21:9 (2014)

    Article  Google Scholar 

  15. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:5 (2013)

    Article  Google Scholar 

  16. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. 33(4), 104 (2014)

  17. Mao, H., Yang, Y.H.: Particle-based non-Newtonian fluid animation with heating effects. Tech. rep. (2006)

  18. Miller, G., Pearce, A.: Globular dynamics: a connected particle system for animating viscous fluids. Comput. Graph. 13(3), 305–309 (1989)

    Article  Google Scholar 

  19. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)

  20. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Rep. 18(2), 109–118 (2007)

    Article  Google Scholar 

  21. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)

  22. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 141–151 (2004)

  23. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. 28(3), 40:1–40:6 (2009)

    Article  Google Scholar 

  24. Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18(1), 69–82 (2007)

    Article  Google Scholar 

  25. Steele, K., Cline, D., Egbert, P.K., Dinerstein, J.: Modeling and rendering viscous liquids. Comput. Animat. Virtual Worlds 15(3–4), 183–192 (2004)

    Article  Google Scholar 

  26. Takahashi, T., Fujishiro, I., Nishita, T.: A velocity correcting method for volume preserving viscoelastic fluids. In: Proceedings of the Computer Graphics International 2014 (2014)

  27. Takahashi, T., Nishita, T., Fujishiro, I.: Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics. Comput. Graph. 43, 21–30 (2014)

    Article  Google Scholar 

  28. Takamatsu, K., Kanai, T.: A fast and practical method for animating particle-based viscoelastic fluids. Int. J. Virtual Real. 10, 29–35 (2011)

    Google Scholar 

  29. Tamura, N., Nakaguchi, T., Tsumura, N., Miyake, Y.: Spring-bead animation of viscoelastic materials. IEEE Comput. Graph. Appl. 27(6), 87–93 (2007)

    Article  Google Scholar 

  30. Terzopoulos, D., Platt, J., Fleischer, K.: Heating and melting deformable models. J. Vis. Comput. Animat. 2, 68–73 (1991)

    Article  Google Scholar 

  31. Zhou, Y., Lun, Z., Kalogerakis, E., Wang, R.: Implicit integration for particle-based simulation of elasto-plastic solids. Comput. Graph. Forum 32(7), 215–223 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by JST CREST. We would like to thank anonymous reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, T., Dobashi, Y., Fujishiro, I. et al. Volume preserving viscoelastic fluids with large deformations using position-based velocity corrections. Vis Comput 32, 57–66 (2016). https://doi.org/10.1007/s00371-014-1055-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1055-x

Keywords

Navigation