Skip to main content
Log in

Visual inspection of multivariate volume data based on multi-class noise sampling

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Visualizing multivariate volume data is useful when the user wants to inspect the correlational distributions of multiple variables in a spatial field. Existing solutions commonly rely on color blending or weaving techniques to show multiple variables on a sampling point, probably causing heavy visual confusion. This paper presents an alternative solution that employs a multi-class sampling technique to generate spatially separated sampling points for multiple variables and illustrates the sampling points of each variable individually. We combine this new sampling scheme with the conventional direct volume rendering mode, iso-surface mode, and the cutting plane mode to support interactive inspection of volumetric distributions of multiple variables. The effectiveness of our approach is demonstrated with the IEEE VIS Contest 2004 Hurricane dataset and a 3D nuclear fusion simulation dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johnson, C.: Top scientific visualization research problems. IEEE Comput. Graph. Appl. 24(4), 13–17 (2004)

    Article  Google Scholar 

  2. Woodring, J., Shen, H.-W.: Multi-variate, time varying, and comparative visualization with contextual cues. IEEE Trans. Vis. Comput. Graph. 12(5), 909–916 (2006)

    Article  Google Scholar 

  3. Urness, T., Interrante, V., Marusic, I., Longmire, E., Ganapathisubramani, B.: Effectively visualizing multi-valued flow data using color and texture. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 16. IEEE Computer Society Seattle, WA (2003)

  4. Fang, M., Lu, J., Peng, Q.: Volumetric data modeling and analysis based on seven-directional box spline. Sci. China Inf. Sci. 57(6), 1–14 (2014)

    Article  MATH  Google Scholar 

  5. Strengert, M., Klein, T., Botchen, R., Stegmaier, S., Chen, M., Ertl, T.: Spectral volume rendering using gpu-based raycasting. Vis. Comput. 22(8), 550–561 (2006)

    Article  Google Scholar 

  6. Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  7. Chuang, J., Weiskopf, D., Moller, T.: Hue-preserving color blending. IEEE Trans. Vis. Comput. Graph. 15(6), 1275–1282 (2009)

    Article  Google Scholar 

  8. Kuhne, L., Giesen, J., Zhang, Z., Ha, S., Mueller, K.: A data-driven approach to hue-preserving color-blending. IEEE Trans. Vis. Comput. Graph. 18(12), 2122–2129 (2012)

    Article  Google Scholar 

  9. Khlebnikov, R., Kainz, B., Steinberger, M., Schmalstieg, D.: Noise-based volume rendering for the visualization of multivariate volumetric data. IEEE Trans. Vis. Comput. Graph. 19(12), 2926–2935 (2013)

    Article  Google Scholar 

  10. Khlebnikov, R., Kainz, B., Steinberger, M., Streit, M., Schmalstieg, D.: Procedural texture synthesis for zoom-independent visualization of multivariate data. Comp. Graph. Forum 31(3pt4), 1355–1364 (2012). doi:10.1111/j.1467-8659.2012.03127.x

  11. Tufte, E.R.: Envisioning information. Optom. Vis. Sci. 68(4), 322–324 (1991)

    Article  Google Scholar 

  12. Biswas, A., Dutta, S., Shen, H.-W., Woodring, J.: An information-aware framework for exploring multivariate data sets. IEEE Trans. Vis. Comput. Graph. 19(12), 2683–2692 (2013)

    Article  Google Scholar 

  13. Guo, H., Xiao, H., Yuan, X.: Multi-dimensional transfer function design based on flexible dimension projection embedded in parallel coordinates. In: Pacific Visualization Symposium (PacificVis), 2011 IEEE, pp. 19–26. IEEE, Hong Kong (2011)

  14. Guo, H., Xiao, H., Yuan, X., et al.: Scalable multivariate volume visualization and analysis based on dimension projection and parallel coordinates. IEEE Trans. Vis. Comput. Graph. 18(9), 1397–1410 (2012)

    Article  Google Scholar 

  15. Cai, W., Sakas, G.: Data intermixing and multi-volume rendering. Comp. Graph. Forum 18(3), 359–368 (1999). doi:10.1111/1467-8659.00356

  16. Akiba, H., Ma, K.-L., Chen, J.H., Hawkes, E.R.: Visualizing multivariate volume data from turbulent combustion simulations. Comput. Sci. Eng. 9(2), 76–83 (2007)

    Article  Google Scholar 

  17. Akiba, H., Ma, K.-L.: A tri-space visualization interface for analyzing time-varying multivariate volume data. In: Proceedings of the 9th Joint Eurographics/IEEE VGTC Conference on Visualization. EUROVIS’07, pp. 115–122. Eurographics Association, Aire-la-Ville, Switzerland (2007)

  18. Sauber, N., Theisel, H., Seidel, H.-P.: Multifield-graphs: an approach to visualizing correlations in multifield scalar data. IEEE Trans. Vis. Comput. Graph. 12(5), 917–924 (2006)

    Article  Google Scholar 

  19. Crawfis, R.: Multivariate volume rendering. In: Tech. rep.. Lawrence Livermore National Lab., CA (1996)

  20. Djurcilov, S., Kim, K., Lermusiaux, P., Pang, A.: Visualizing scalar volumetric data with uncertainty. Comput. Graph. 26(2), 239–248 (2002)

    Article  Google Scholar 

  21. Hagh-Shenas, H., Kim, S., Interrante, V., Healey, C.: Weaving versus blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color. IEEE Trans. Vis. Comput. Graph. 13(6), 1270–1277 (2007)

    Article  Google Scholar 

  22. Fuchs, R., Hauser, H.: Visualization of multi-variate scientific data. Comp. Graph. Forum 28(6), 1670–1690 (2009). doi:10.1111/j.1467-8659.2009.01429.x

  23. Kehrer, J., Hauser, H.: Visualization and visual analysis of multifaceted scientific data: a survey. IEEE Trans. Vis. Comput. Graph. 19(3), 495–513 (2013)

    Article  Google Scholar 

  24. Yellott, J.I.: Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221(4608), 382–385 (1983)

    Article  Google Scholar 

  25. Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1), 51–72 (1986)

    Article  Google Scholar 

  26. Cohen, M.F., Shade, J., Hiller, S., Deussen, O.: Wang tiles for image and texture generation. ACM Trans. Graph. 22(3), 287–294 (2003). doi:10.1145/882262.882265

  27. Lagae, A., Dutré, P.: A procedural object distribution function. ACM Trans. Graph. 24(4), 1442–1461 (2005)

    Article  Google Scholar 

  28. Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: a variant of Lloyd’s method. ACM Trans. Graph. 28(3), 86:1–86:8 (2009). doi:10.1145/1531326.1531392

  29. Wei, L.-Y.: Multi-class blue noise sampling, ACM Trans. Graph 29(4) (2010)

  30. Wu, Y.-C., Tsai, Y.-T., Lin, W.-C., Li, W.-H.: Generating pointillism paintings based on seurat’s color composition. Comp. Graph. Forum 32(4), 153–162 (2013). doi:10.1111/cgf.12161

  31. Yuan, X., Guo, P., Xiao, H., Zhou, H., Qu, H.: Scattering points in parallel coordinates. IEEE Trans. Vis. Comput. Graph. 15(6), 1001–1008 (2009)

    Article  Google Scholar 

  32. Janicke, H., Bottinger, M., Scheuermann, G.: Brushing of attribute clouds for the visualization of multivariate data. IEEE Trans. Vis. Comput. Graph. 14(6), 1459–1466 (2008)

    Article  Google Scholar 

  33. Tzeng, F.-Y., Lum, E.B., Ma, K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans. Vis. Comput. Graph. 11(3), 273–284 (2005)

    Article  Google Scholar 

  34. Theisel, H., Sahner, J., Weinkauf, T., Hege, H.-C., Seidel, H.-P.: Extraction of parallel vector surfaces in 3d time-dependent fields and application to vortex core line tracking. In: Visualization, 2005. VIS 05. IEEE, pp. 631–638. IEEE, Minneapolis, MN (2005)

  35. Barakat, S., Andrysco, N., Tricoche, X.: Fast extraction of high-quality crease surfaces for visual analysis. Comp. Graph. Forum 30(3), 961–970 (2011). doi:10.1111/j.1467-8659.2011.01945.x

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments. This work was partially supported by the National High Technology Research and Development Program of China (2012AA12090), Major Program of National Natural Science Foundation of China (61232012), National Natural Science Foundation of China (61422211), National Natural Science Foundation of China (61303134), the Fundamental Research Funds for the Central Universities (2013QNA5010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Ding, Z., Chen, W. et al. Visual inspection of multivariate volume data based on multi-class noise sampling. Vis Comput 32, 465–478 (2016). https://doi.org/10.1007/s00371-015-1070-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1070-6

Keywords

Navigation