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Abstract
Nonrigid or deformable 3D objects are common in many ap-
plication domains. Retrieval of such objects in large databases
based on shape similarity is still a challenging problem. In this
paper, we take advantages of functional operators as charac-
terizations of shape deformation, and further propose a frame-
work to design novel shape signatures for encoding nonrigid
geometries. Our approach constructs a context-aware integral
kernel operator on a manifold, then applies modal analysis to
map this operator into a low-frequency functional representa-
tion, called fast functional transform, and finally computes its
spectrum as the shape signature. In a nutshell, our method
is fast, isometry-invariant, discriminative, smooth and numer-
ically stable with respect to multiple types of perturbations.
Experimental results demonstrate that our new shape signature
for nonrigid objects can outperform all methods participating
in the nonrigid track of the SHREC’11 contest. It is also the
second best performing method in the real human model track
of SHREC’14.

1 Introduction
Content-based 3D object retrieval facilitates the search for de-
sired objects within a large 3D object repository. It has be-
come increasingly popular due to the rapid development of 3D
scanning technologies and the emergence of large 3D object
databases. Content-based object retrieval is useful in many ap-
plication domains, including CAD/CAM, medicine, molecular
biology, 3D computer games and virtual worlds.

Since many 3D object models, such as avatars, creatures and
biomedical objects, can take various types of deformations, it
is much desired for an object retrieval technique to be able to
recognize deformed versions of an object. Nonetheless, non-
rigid object retrieval is a very challenging task because a de-
formed object may not be visually similar to the original one
any more. In the following, we summarize a few criteria for
measuring the performance of nonrigid object retrieval tech-
niques.

• Isometry Invariance. There exist a large variety of non-
rigid deformations. In theory, one can always work out a
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deformation that transforms one object into another com-
pletely different object. Therefore, it is very important to
define a subclass of deformations that usually do not alter
the identity of an object, and then develop nonrigid object
retrieval methods that are invariant or at least insensitive
to this subclass of deformations. In the literature, isomet-
ric deformations are commonly adopted for this purpose.

• Discrimination Power. In most retrieval techniques, an
object is represented with a relatively short shape descrip-
tor or signature. It is important for the shape descriptor
or signature to encode the intrinsic characteristics of an
object while discarding unimportant details so that it can
distinguish two different objects even when they are vi-
sually very similar, and accurately measure the degree of
dissimilarity between them. Such a capability makes it
possible for a retrieval technique to return a ranked list of
objects with decreasing similarity with a query object.

• Efficiency. Computation of shape signatures or descrip-
tors contains offline and online stages. Many methods
often requires significant amount of time to process a sin-
gle mesh in offline stage, which prohibits their use in
large database (say if a PC takes ten minutes to process
a mesh, it would take tens of years to process an entire
database in size of a million). In online stage, comparison
of shape is also often time-critical, such that signature-
based approaches are still favored over shape matching
approaches in a typical retrieval system.

• Smoothness and Stability. Although isometric modeling
provides a state-of-the-art theoretical base for nonrigid
object retrieval, numerical stability of isometry-invariant
shape descriptors or signatures has not been sufficiently
explored. It is much desired that a shape descriptor only
changes slightly when a small amount of nonisometric
deformation is introduced to the original object. Like-
wise, it is also desired that the shape descriptor is stable
when other types of defects, such as noise and holes, are
introduced to the original object. Stable shape descrip-
tors and signatures give rise to robust retrieval results.
Mathematical definitions with respect to the smoothness
of shape perturbations and the stability of descriptors are
still missing.

In addition to the above four criteria, there exist other con-
siderations, including extensibility, applicability and complex-
ity of implementation (e.g. parameter free).
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1.1 Related Work

Among extensive work on 3D object retrieval, most techniques
are devoted to rigid objects and are based on extrinsic ge-
ometry such as Euclidean distance, curvatures and snapshots
of 3D canonical views. Nevertheless, nonrigid models have
gained increasing popularity. Their extrinsic geometry often
varies under nonrigid deformations. Isometric shape deforma-
tion was initially addressed in [13], where researchers began
to consider bending invariant or insensitive 3D shape recogni-
tion. Recently, more extensive classes of invariance have been
studied, such as elastic deformations [19] and affine transfor-
mations [33].

To our knowledge, two major classes of approaches are pro-
posed for nonrigid shape retrieval during the last decade. The
first class includes all local feature based approaches (such
as earlier work [40, 17, 48, 29]). Inspired by the success
of the SIFT feature descriptor in image retrieval, researchers
proposed local descriptors, such as meshSIFT [29], Mesh-
HOG [48], covariance descriptor [43], and descriptors based
on the spectral graph wavelet transform [23], for representing
features on mesh surfaces. ShapeGoogle [8] emphasizes the
robustness of association and classification, especially for ob-
jects with missing parts and topological noises. It integrates
the local Heat Kernel Signature (HKS) [40] with the bag-of-
word framework [21]. By extracting isometrically invariant
dense point descriptors and quantizing them into binary codes,
shapes are registered for efficient indexing, comparison and
association. A more recent method [15] also endeavors to
characterize 3D surfaces by measuring the likelihood of points
in the 3D space being local centers of radial symmetry at se-
lected scales. It could be useful in domain-specific 3D object
retrieval, where the scale is known.

The second class emphasizes coarser-scale or global shape
of a 3D nonrigid model. The skeleton-based method (e.g. [2])
encodes the geometric and topological information in the form
of a skeleton graph and uses graph matching to retrieve similar
skeletons. An approach for matching 3D objects in the pres-
ence of nonrigid transformations and partially similar models
is presented in [42], which uses 3D curves extracted around
feature points to represent surfaces. Another method based on
distributions of diffusion distances has been proposed in [9]
for matching nonrigid shapes. Techniques, such as histograms,
D2 distributions [36] and spatial pyramids [22], are also pop-
ular in designing descriptors in respect of coarse-scale shapes.
Some of them are “context-aware”: the term “context-aware”
refers to dependencies between geometric characteristics not
within each other’s immediate neighborhoods, distinguishing
itself from “bag-of-words” approaches that focus on local ge-
ometric neighborhoods. Laga et al. [20] model the context of
a shape part as a set of walks in the graph of specific length
originating from the part’s node. In particular, they construct
a context-aware similarity measure by relating their model of
contexts to semantic correspondences. In our paper, we merely

consider the context as a purely geometric property, aka the
context of a point given a shape domain, and therefore, do not
intend to recognize functionalities of shape parts. As other
global shape descriptors, we do not generate an exact signa-
ture for contexts, yet our proposed signature is sensitive to any
changes of such geometric contexts.

Among those methods concerning global shapes, spectrum-
based techniques became popular in recent years. Shape-DNA
[35] proposes to use the spectrum of the Laplace-Beltrami op-
erator as an isometry-invariant shape descriptor. Another sim-
ilar method, SD-GDM [38] proposes to compute a singular
value decomposition (spectrum) for the geodesic distance ma-
trix, which seems to outperform shape-DNA [24]. However,
compared to shape-DNA, matrix assembly in SD-GDM re-
quires all-pairs geodesic distances, which are computationally
prohibitive to obtain even with the latest developments in fast
geodesic distance computation [47], and a uniform mesh dec-
imation is typically employed in practice to speed up this pro-
cess. Utilizing spectral analysis is often effective for extract-
ing isometric information. For example, spectral multidimen-
sional scaling [1] has used the spectral projection of geodesic
distances for better MDS embedding of data points. An ef-
ficient method for computing a robust spectrum-based shape
descriptor insensitive to noises and small topological changes
is presented in [46], which achieves efficiency and robustness
by performing a modal space transform. This paper is an ex-
tended version of [46].

Local features, such as SIFT [28] and its variants, have
been successfully adopted in image retrieval. However, in
the context of 3D nonrigid shape retrieval, local feature based
methods have often been outperformed by shape descriptors
emphasizing coarser-scale shapes. The reason for this phe-
nomenon is two-fold. First, pixel values captured by a camera
are related to high-frequency surface properties, such as tex-
tures, of real scenes and objects. Given such high-frequency
signals, it is possible for a local feature descriptor to encode
sufficiently discriminative visual information for recognition
or retrieval tasks. Second, 3D scanning techniques are not
as mature as digital photography. Even when a 3D surface
does have high-frequency details, such as pores and wrinkles
on skin, it is unlikely for them to be accurately captured by a
3D scanner. Very often, such high-frequency details are buried
in noises. Therefore, high-frequency geometry over a 3D sur-
face tend to be inaccurate and unreliable (see [31] for related
discussions).

Content-based multimedia retrieval is known as a prob-
lem/scenario dependent task. If one is interested in retrieving
objects that share similar parts with the query object, meth-
ods based on point signatures should be more useful. How-
ever, if one is interested in finding globally similar nonrigid
objects with potentially different poses and deformations, a
global shape signature can more effectively prune the list of
candidates. Even when a state-of-the-art point signature, such
as the one in [23], is used in global shape retrieval, a spatial
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aggregation and matching scheme, such as histogram match-
ing and spatial pyramid matching, still needs to be employed.
Inevitably, such aggregation partially loses relative spatial in-
formation among point features. On the other hand, a global
signature is capable of encoding the complete geometric shape
up to an invariant class, and thus is a more powerful global
shape representation. Therefore, global and local shape signa-
tures are complementary to each other.

1.2 Overview and Contributions
In this paper, we analyze functional operators over modal
space and further introduce spectrum-based shape signatures
to encode the shape of a nonrigid model. The basic idea un-
derlying our shape signature is to compute the spectrum of the
newly proposed functional operator, which is constructed from
an intrinsic, context-aware integral kernel operator by project-
ing it to the linear space spanned by low-frequency modes de-
fined over an object surface, while the integral kernel operator
is itself based on a modal based pairwise distance. The result-
ing transformation matrix can be analytically written in a suc-
cinct form. Our method is isometry-invariant and stable with
respect to noise, holes and nonisometric deformations. The
implementation of our shape signature is based on linear FEM.
The signature itself can be efficiently computed for meshes in
a wide range of resolutions and topologies.

The main contribution of this paper is the introduction of a
substantially improved global shape signature, which has been
experimentally validated to meet most of the aforementioned
criteria. Our experiments demonstrate that our new shape sig-
nature for nonrigid objects can outperform all methods par-
ticipating in the nonrigid track of the SHREC 2011 contest
[24], including the best performing method. In particular,
our method achieves obviously higher precision than all other
methods when recall is above 50%. Comparisons were per-
formed on two representative datasets, the dataset used in the
nonrigid track of SHREC’11 and a more challenging one cre-
ated by ourselves. We have also tested our method on the more
recent SHREC 2014 dataset for the retrieval of nonrigid hu-
man models [31], which have two tracks (synthetic and real).
Our method is among the best performing methods in the real
human model track.

The rest of the paper is organized as follows. In Section 2,
we discuss the fundamental mathematics behind our signature
design. In Section 3, we discuss our numerical implementa-
tion. In Section 4, we present experimental results to validate
our shape signature. Section 5 concludes our paper.

2 Our approach

2.1 Laplace-Beltrami Operator
Shape-DNA [35] exploits eigenvalues to achieve an impressive
shape retrieval performance, while there are a number of other

methods, such as [36, 40], utilizing eigenvectors. All these
methods compute the spectrum of the Laplace-Beltrami oper-
ator ∆M , where M is the underlying manifold embedded in
the 3D Euclidean space as a surface, by solving the following
eigenvalue problem,

−∆Mu = λu. (1)

The Laplace-Beltrami operator is a generalized operator
for functions defined on Riemannian manifolds. By solving
the above equation, we obtain a complete set of modal bases
{ϕi}∞i=0 over a manifold, where each ϕi corresponds to a nor-
malized eigenvector with eigenvalue λi in an ascending order.

2.2 Functional Operator

The eigenvectors of Laplace-Beltrami operator intrinsically
span a low-frequency functional space Φ which is useful in
modal analysis. For example, in [30], the authors construct
intrinsic flexible maps between two shapes by solving for a
linear transform matrix between their modal spaces Φ1 7→ Φ2

subject to certain constraints.
We instead focus on intrinsic functional transforms i.e.

maps between Φ and itself. Of course, Laplace-Beltrami op-
erator is itself a functional transform that map ϕi 7→ −λiϕi,
which is isometry-invariant. We in this section introduce a
new set of functional transforms whose spectra are more ro-
bust than the spectrum of the Laplace-Beltrami operator.

Given a symmetric function, k(·, ·), let us consider the fol-
lowing integral kernel operator,

Kf(y) =

∫
M

k(x, y)f(x)dx. (2)

If k(·, ·) is isometry-invariant, the spectrum of K is also
isometry-invariant. For example, in the non-rigid track of
the 2011 3D shape retrieval contest (SHREC’11) [24], the
retrieval performance of SD-GDM [38], a method based on
geodesic distance matrices (GDM), is ranked first. It outper-
forms shapeDNA. GDMs are in fact a class of integral kernel
operators. If we set k(x, y) as the geodesic distance between
x and y, the spectrum of K is the mathematically precise form
of SD-GDM and is provable isometry-invariant. More impor-
tantly, we show in Appendix A that an integral kernel operator
defines a family of “smooth” deformations, and the total de-
viation of the spectral signature of the integral kernel operator
is finitely bounded under ϵ-deformation no matter how many
dimensions the signature has. Such a property is important
for spectral signatures, as their performance should improve
rather than degrade with an increasing number of eigenval-
ues. A theoretical justification for the use of integral kernel
operators is as follows. If the intended invariant class (typi-
cally larger than the isometric class) of shape perturbations is
the family of deformations characterized by an integral kernel
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operator K whose perturbed kernel Kϵ
1 admits certain spa-

tial smoothness condition, the distance measure based on its
spectral signature with a varying number of dimensions stably
changes with respect to the amount of perturbation. That is to
say, in nonrigid shape retrieval, integral kernel operators can
typically tolerate a larger class of smooth deformations than
isometric deformations.

The major contribution of our approach is instead of naively
computing a transform matrix in the complexity of the original
geometry (i.e. pair-wise values k(xi, xj) for all xi, xj ∈ M ),
we restrict the kernel to modal space Φ (i.e. applying the ker-
nel to functions in Φ, the space spanned by the lower eigen-
vectors, and then projecting the solution back into Φ). We can
write the transform matrix as

K̃ = ΦTKΦ, (3)

where Φ = [ϕ0, ϕ1, . . . , ϕm, . . .].
It is worth noting that this restriction is not a simple effi-

cient approximation, the functional transforms before and af-
ter restriction are different in the numerical aspects. Precisely
speaking, the original functional space before restriction is a
vector space endowed with an inner product; while the func-
tional space Φ in restriction is an infinite dimensional separa-
ble Hilbert space (and is numerically approximated by trun-
cated lower eigenvectors, which converge in a weak sense)
spanned by the modes. These two vector spaces are endowed
with the same inner product structure in the limit. However
their numerical convergence properties are different. Table 1
summarizes their differences.

There exists a theoretical issue when we work with inte-
gral kernel operators numerically without modal restriction:
numerical convergence is only guaranteed in the weak sense,
while the underlying representation is point-wise. Thus the nu-
merically estimated eigenvector of an operator may converge,
but it is not guaranteed for the estimation to converge point-
wise to the true eigenvector as the resolution of the mesh goes
to the infinity. On the other hand, by restricting the functions
of interest in the modal space, we make them have required
smoothness that implicitly guarantee pointwise convergence.
In our experiments (see comparison of BiHDM and R-BiHDM
in Section 4.2), it has been observed that spectra computed by
modal space restriction can better tolerate manifold deforma-
tions, and outperform the spectrum of a pairwise kernel in re-
trieval tasks.

2.3 Distance Map using Modes

Computing the geodesic distance matrix is very computa-
tionally expensive for large meshes. We choose to compute
(squared) biharmonic distance [26] instead because it exhibits
multiple nice properties while being more efficient to compute,

1See Appendix A for the definition of perturbed kernel.

and can be restricted in modal space analytically in a succinct
way.

In the continuous case, the (squared) biharmonic distance is
defined as follows,

d2(x, y) =

∞∑
i=1

(ϕi(x)− ϕi(y))
2

λ2
i

, (4)

where ϕi and λi are the eigenfunctions and eigenvalues
(resp.) of the semi-positive definite Laplace-Beltrami opera-
tor, −∆ϕi(x) = λiϕi(x), where 0 = λ0 < λ1 ≤ λ2 ≤ . . .

and
∫
M

|ϕi|2 = 1. The distance is a metric, and is smooth,
locally isotropic, globally “shape aware”, isometry invariant,
insensitive to noise and small topology changes, parameter-
free, and practical to compute on a discrete mesh. In [26] these
two types of distances have been extensively compared in de-
tail. Biharmonic distance provides a nice trade-off between
being nearly geodesic for small distances and global shape-
awareness for large distances.

2.4 Functional Biharmonic Distance Map
Combining previous two section together, i.e. let k(x, y) =

d2(x, y), we fomulate K̃ explicitly as follows.

Kϕ0(y) =
∞∑
i=1

∫
M

(ϕi(x)− ϕi(y))
2

λ2
i

ϕ0(x)dx

=
1√
A

∞∑
i=1

1

λ2
i

+
√
A

∞∑
i=1

ϕ2
i (y)

λ2
i

where A is the total area of M , and note ϕ0 = 1/
√
A. Let

⟨·, ·⟩ be the standard inner product of L2 functions, we have

a0 = ⟨ϕ0,Kϕ0⟩ =
∑∞

i=1

2

λ2
i

,

aj = ⟨ϕj ,Kϕ0⟩ =
√
A
∫
M

∑∞
i=1

ϕ2
i

λ2
i

ϕj j > 0.
(5)

We also have

Kϕj(y) =
∞∑
i=1

∫
M

(ϕi(x)− ϕi(y))
2

λ2
i

ϕj(x)dx

=
∫
M

∞∑
i=1

ϕ2
i

λ2
i

ϕj −
2ϕj(y)

λ2
j

j > 0,

where ⟨ϕ0,Kϕj⟩ = aj and ⟨ϕi,Kϕj⟩ = − 2

λ2
j

δij . Thus we

have obtained the projected matrix K̃, called reduced bihar-
monic distance matrix (R-BiHDM),

K̃ =


a0 a1 a2 . . .
a1 −2/λ2

1

a2 −2/λ2
2

...
. . .

 . (6)
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space inner product numerics representation numerical convergence
before L2(M) ⟨f, g⟩ =

∫
M

fg finite element pointwise weak convergence in
Sobolev space W k,2

after ℓ2 ⟨f, g⟩ℓ2 =
∑∞

i=1 ⟨f, ϕi⟩ ⟨ϕi, g⟩ truncated modes coefficient series weak convergence in L2

Table 1: Differences between integral kernel operators before and after modal space restriction

The above matrix is infinite. We first define K̃m,n be an
(n+ 1)× (n+ 1) matrix

K̃m,n =



a
(m)
0 a

(m)
1 a

(m)
2 . . . a

(m)
n

a
(m)
1

−2

(λ
(m)
1 )2

0

a
(m)
2

−2

(λ
(m)
2 )2

0

...
. . .

...
a
(m)
n 0 0 . . . −2

(λ
(m)
n )2


, (7)

which is formed by the following two steps: i) take the first
n+1 rows and first n+1 columns of K̃; ii) set λ(m)

i := λi for
i ≤ m and λ

(m)
i := ∞ if i > m in Eq. (7), thus when calcu-

lating each a
(m)
j in this truncated matrix K̃m,n, every infinite

summation in (5) is approximated by the first m terms. The
spectrum of K̃m,n can converge in two ways:

BiHDM: lim
m→∞

spectrum( lim
n→∞

K̃m,n), (8)

and
R-BiHDM: lim

m→∞
spectrum(K̃m,m). (9)

The first scheme corresponds to the case where no modal space
restriction is used. That is, n → ∞ already before the spec-
trum is estimated. The second scheme is our method based on
modal space restriction. The spectra under these two schemes
are different asymptotically. For a finite m, BiHDM computes
the spectrum of K̃m,∞, which still includes the high frequency
components in the first row and the first column, i.e. a(m)

j ̸= 0
for j > m. On the other hand, R-BiHDM computes the
spectrum of K̃m,m without any high frequency components.
In general, the scheme with high frequency components re-
moved is not guaranteed to outperform the one without. But
we remark that our proposed signature has a close connec-
tion with the traditional Fourier descriptor [49], where coef-
ficients corresponding to low-frequency components of a con-
tour signal are used for constructing informative shape signa-
tures. Since high frequency components are more likely to be
contaminated with noises, which are typically high frequency
signals themselves, high frequency components are less reli-
able in characterizing geometric shapes. Our approach extends
a similar spirit to integral kernel operators on a manifold: the
“low-frequency representation” of an integral kernel operator
is more useful and reliable in characterizing its shape domains.

We call K̃m := K̃m,m empirical R-BiHDM. As m → ∞,
the largest tens of eigenvalues of K̃m enjoy a fast convergence

rate. Figure 7 shows the maximum error of the first 30 eigen-
values versus m, the number of eigenpairs of the Laplace-
Beltrami operator. It has been observed that the asymptotic
eigenvalues converge linearly.

Theorem 2.1 (Spectral Convergence of empirical R-BiHDM).
If M is a two-dimensional Riemannian manifold and is com-

pact, then
∞∑
i=1

ϕ2
i

λ2
i

is bounded both pointwise and in the form

of the L2 norm. Furthermore, the leading eigenvalues of K̃m

converge to that of K̃ as m → ∞.

Proof. See Appendix B for a proof with a more general con-
dition.

Note that tr(K̃) = 0. We denote all eigenvalues of K̃ in
a magnitude descending order as {µj}Lj=0. We have observed
that µ0 > 0 and µj < 0 ∀j > 0. (Such matrix has a sin-
gle positive eigenvalue, and the rest are negative. See [3] and
references therein) Hence a scale invariant spectrum can be
defined as

µ̄j = |µj/µ0| . (10)

Our shape signature is defined as a vector S =
[µ̄1, µ̄2, . . . , µ̄L]

T , which in theory is also isometric invari-
ant. In practice, we select L ranging from 10 ∼ 30, and
m > max{60, 2L}.

To compare two shape signatures, Sp and Sq , one can ref-
erence the dissimilarity measures in [38]. In particular, let us
mention two useful ones here, mean normalized Manhattan
distance,

D1 =
L∑

j=1

∣∣∣∣∣S
p
j − Sq

j

Sp
j + Sq

j

∣∣∣∣∣ ,
which is used in SD-GDM, and normalized Euclidean distance

D2
2 =

L∑
j=1

(Sp
j − Sq

j )
2

Sp
j S

q
j

, (11)

which performs slightly better for our approach by experi-
ments.

Computational Efficiency. A clear advantage of working
with functionally transformed biharmonic distance is signifi-
cantly reduced size and complexity of the kernel matrix. The
computation of the original kernel matrix (either geodesics or
biharmonic distance) has a much higher complexity, O(Cn2),
than that of the reduced one (6), whose complexity is O(nm).
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Here n is the number of sample points on the surface, m ≪ n,
and C is the time for computing a distance between two sam-
ple points, e.g. C = O(m) for biharmonic distance. Also,
computing the eigenvalues of the original kernel matrix could
be even more expensive because it is usually a large-scale nxn
dense matrix, while computing the eigenvalues of the reduced
one takes much less time.

3 Implementation
To compute the eigenspace of the Laplace-Beltrami operator
on a manifold, we use finite elements [50] to formulate the
eigenfunction space as in [35]. Although solving PDEs with
FEM is sampling invariant, mesh quality during discretization
is an important factor affecting numerical accuracy. Fortu-
nately, there is already considerable amount of work [12, 5]
in mesh generation, repairing and quality improvement. Our
method only assumes that the mesh is properly refined to at
least a few thousand triangles and has no (near) degenerated
faces. In our implementation, we use Neumann boundary con-
dition whenever a mesh has boundaries.

Following the standard setup of FEM, we need to solve the
following sparse symmetric generalized eigenvalue problem
that has efficient solvers, such as IRAM [4] and Krylov-Schur
[39],

Lu = λDu,

where L is the stiff matrix and D is the mass matrix. They
are defined as follows. Lij =

∫
M

∇φi · ∇φj , and Dij =∫
M

φiφj , where Lij and Dij are analytically calculated from
the geometry of the elements, and φi is chosen to be a piece-
wise polynomial in each element. See appendix C for a de-
tailed implementation of linear and cubic triangular FEMs.

Once L and D have been assembled, the inner products be-
tween two functions f and g, discretely represented by finite
elements over a mesh domain, are given as∫

M

fg =
N∑

i,j=1

Dijfigj ,

∫
M

∇f · ∇g =
N∑

i,j=1

Lijfigj ,

∫
M

f2g =

N∑
i,j=1

f2
i Dijgj or

N∑
i,j=1

fiDijfjgj .

Once eigenfunctions of the Laplace-Beltrami operator have
been computed, we are able to use the above equations to com-
pute ai in (6).

4 Experimental Results

4.1 Efficiency
Efficiency is usually important for shape retrieval techniques
to be practical on large datasets. Computational intensity is a

major limitation of methods based on optimization, geodesic
computation, and per-node based quantization. In contrast, our
approach can always compute shape signatures in an efficient
manner. Because our approach is directly based on comput-
ing lower eigenvalues/eigenvectors of Laplace-Beltrami oper-
ator and requires very little extra cost of assembly R-BiHDM
(see eq. (6)) and solving for its eigenvalues. The eigensolver
of Laplace-Beltrami operator contain a sparse direct precon-
ditioner in complexity O(n2) and a dimensional free iterative
eigensolver in complexity O(n).

Model #vert. Time Model #vert. Time
R-BiHDM: linear FEM SD-GDM

gmm prisms 969 0.5s gmm prisms 969 14.8s
abstract 4096 1.7s ant dec 2502 2m28s

nonrigid ant 9501 4s abstract 4096 12m13s
human meta 13336 5.8s meshSIFT
helicopter 22664 9.8s ant dec 2502 1m31s
bimba cvd 74764 41s abstract 4096 2m5s

desktop 106961 1m20s nonrigid ant 9501 13m5s

Table 2: Timings for constructing shape signatures or descrip-
tors. Our shape signature can be computed much more effi-
ciently than most successful methods in the literature. For a
mesh with 10k vertices, we can compute its signature within
seconds.

On an Intel Core2 Duo CPU E8400@3.00GHz, running
times required for the methods used in the subsequent section
4.2 are reported in Table 2. Such running times are based on
our implementation of R-BiHDM and SD-GDM [38]2, and the
original authors’ implementation of meshSIFT [29]3.

It is seen from the timing table that, computations of SD-
GDM and meshSIFT are expensive even for a mesh with
only thousands vertices and grow super linearly, while our
method is much faster at the same resolutions (see timing of
model “abstract”). Some of more recent leading performance
methods, such as shapeGoogle [8], Supervised DL [27] and
ISPM [22, 23], also suffer from the prohibitive long running
time [31, 27].

4.2 Signature Based Retrieval
We have tested the nonrigid shape retrieval performance of
our method on two representative datasets. One is provided
by the nonrigid track of SHREC’11 [24] (Figure 1), which
has 600 watertight triangle meshes that were derived from
30 original models. The second dataset mixes the nonrigid
dataset from SHREC’11 with a dataset custom built by our-
selves. The SHREC’11 nonrigid track dataset serves as a
background dataset. The custom built dataset contains 200

2Geodesic distance is computed using the fast marching Mat-
lab toolbox, http://www.mathworks.com/matlabcentral/
fileexchange/6110

3This code can be downloaded at https://mirc.uzleuven.be/
MedicalImageComputing/downloads/meshSIFT.php
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Figure 1: 30 classes of nonrigid models in the nonrigid track
of SHREC’11

deformed meshes derived from 4 biped models, 3 dinosaur
models and 3 quadruped models (Figure 2(a)) and 40 back-
ground meshes (other biped, dinosaur and quadruped models,
see Figure 2 (b)). The second dataset was designed to be more
challenging and practical than the first one because it contains
multiple similar meshes from each category of models, such
as bipeds, dinosaurs and quadrupeds. Distinguishing similar
models from the same category requires a retrieval technique
to be more discriminative and stable. In the second dataset, we
have performed retrieval tests on the 200 deformed meshes in
a repository with a total of 840 (200+40+600) meshes.4

We applied the same evaluation methodology of the
SHREC’11 contest to evaluate our method. It is based on the
Precision-Recall curve and five quantitative measures: Nearest
Neighbor (NN), First Tier (FT), Second Tier (ST), E-measure
(E), and Discounted Cumulative Gain (DCG). We refer to [37]
for detailed definitions. In our method, we use Normalized Eu-
clidean distance to measure similarity among R-BiHDM sig-
natures (see eq. (10)).

We have compared the retrieval performance of our method
with that of Shape-DNA (OrigM-n12-norm1) [35], meshSIFT
[29], and SD-GDM [38]. These are the best state-of-art per-
forming methods in the nonrigid track of the SHREC’11 con-
test.5 The parameters in these methods were set empirically
to produce best performance. We also compare our method,
i.e. R-BiHDM, with pairwise biharmonic distance matrix (Bi-
HDM) and report its performance. Detailed comparison re-
sults on the SHREC’11 nonrigid track dataset are shown in
Table 3 and Figure 3(a). Detailed comparison results on the
second dataset are shown in Table 4 and Figure 3(b).

According to the statistics, our method achieves better per-
formance than all of these methods on both datasets. In partic-
ular, our method has obvious improvements in the 1-Tier pre-
cision. And according to the PR curves, our method achieves
higher precision when recall is above 50%. Furthermore, the
retrieval performance is stable when the number of chosen
eigenvalues ranges from 15 to 30. The changes of NN, ST,
E and DCG measures are not larger than 0.5% (absolutely)

4This dataset can be downloaded at https://code.google.com/
p/tri-mesh-toolkit/

5A hybrid track combining SD-GDM and meshSIFT in SHREC’11 did
achieve a better performance, but it falls out of scope in our state-of-art evalu-
ation.

(a) Representative query meshes, including 4 bipeds, 3 dinosaurs and 3
quadrupeds, from the second dateset

(b) Ambiguous meshes, including 13 bipeds, 13 dinosaurs and 14 quadrupeds,
from the second dataset

Figure 2: Examples from our second dataset

Method NN FT ST E DCG
shape-DNA 0.998 0.890 0.952 0.696 0.975

MDS-CM-BoF 0.995 0.913 0.969 0.717 0.982
MeshSIFT 0.998 0.800 0.851 0.627 0.944
SD-GDM 1.000 0.956 0.982 0.728 0.992

BiHDM-L25 0.990 0.915 0.979 0.719 0.984
R-BiHDM-L30 0.998 0.969 0.981 0.729 0.993
R-BiHDM-L25 0.998 0.971 0.982 0.729 0.994
R-BiHDM-L23 1.000 0.971 0.983 0.730 0.994
R-BiHDM-L20 1.000 0.964 0.982 0.728 0.993
R-BiHDM-L15 0.998 0.955 0.981 0.726 0.991

Table 3: Retrieval performance evaluated using five standard
measures on the SHREC’11 dataset. The performance of
MDS-CM-BoF is cited from the SHREC’11 report.

on both datasets, while the changes of 1-Tier precisions on
the original SHREC’11 dataset and the second dataset are
smaller than 2% and 1% respectively. The best performance
is achieved when L = 23 on both datasets simultaneously,
further indicating that different datasets could share the same
parameter setting. The primary goal of Shape Google [8] is
to achieve a high level of robustness in the presence of partial
shapes and topological noises. However, it does not address
the identical problem as ours. In our experiments (based on
implementation provided by authors), its retrieval performance
on our two datasets is not comparable to the performance of
our method.

Note that the performance gap between our method and the
other methods becomes larger on the second dataset. As dis-
cussed earlier, the second dataset is more challenging with
similar shape instances from the same categories. The results
indicate that our method exhibits more discriminative power
on datasets with very similar shape instances.
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METHOD NN FT ST E DCG
shape-DNA 0.985 0.841 0.906 0.666 0.954
MeshSIFT 0.995 0.790 0.890 0.650 0.950
SD-GDM 1.000 0.929 0.986 0.731 0.991

BiHDM-L25 1.000 0.930 0.983 0.722 0.990
R-BiHDM-L30 1.000 0.970 0.996 0.739 0.997
R-BiHDM-L25 1.000 0.975 0.997 0.742 0.998
R-BiHDM-L23 1.000 0.976 0.997 0.742 0.998
R-BiHDM-L20 1.000 0.975 0.997 0.742 0.998
R-BiHDM-L15 1.000 0.970 0.994 0.739 0.997

Table 4: Retrieval performance evaluated using five standard
measures on the second dataset.

4.3 Nonrigid Retrieval of Human Models

We have also tested our proposed signature on the SHREC’14
nonrigid dataset for retrieving human models. There are two
tracks, one uses synthetic data, and the other uses real data
built from point clouds. These two datasets exhibit substan-
tially different properties. The synthetic dataset consists of 15
different human models, each with its own unique body shape,
which is determined by a parametric model. The real dataset
is composed of 400 meshes, made up of 40 human subjects in
10 different poses. This real dataset is noisy and inaccurate in
that certain body features cannot be accurately captured and
human poses cannot be precisely controlled. As a participat-
ing method, detailed performance statistics of our method have
been reported as the R-BiHDM-s method in [31] and more re-
cently in [27], from which we only quote relevant results in
this paper.

Method Synthetic Real
ISPM [22, 23] 90.2 25.8

HAPT [15] 81.7 63.7
Unsupervised DL [27] 84.2 53.3

Supervised DL [27] 95.4 79.1
ShapeGoogle(VQ) [8] 81.3 51.4

R-BiHDM-s 64.2 64.0

Table 5: Comparison with different retrieval methods in terms
of mean average precision (mAP, in%) on the SHREC’14 Hu-
man Model datasets (selected results from [27]).

On the synthetic dataset, our method does not perform as
well as others which gather statistics from local features. This
is perhaps because our proposed signature is a geometric de-
scriptor that captures smooth and global deformations. It has
no intention to distinguish between different types of localized
deformation, such as pose-driven muscle deformation. Over-
all, this dataset is relatively easy because a simplistic baseline
method, such as the total area of a mesh, can already achieve
decent performance [31].

The real dataset is much more challenging than the synthetic
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(a) SHREC’11 nonrigid dataset
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Figure 3: Precision-recall curves of R-BiHDM, BiHDM, SD-
GDM and shapeDNA on two retrieval tasks

one. The performance of our proposed signature is ranked
second. The only participating method that outperforms ours
is Supervised DL, which is a supervised data-driven method
that requires an extra labeled dataset to train the model. Be-
cause of this, supervised methods have clear advantages over
unsupervised ones, such as ours, in terms of retrieval perfor-
mance. Nevertheless, our method achieves the best perfor-
mance among unsupervised methods, including Unsupervised
DL (the unsupervised version of Supervised DL), and even
performs better than HAPT, another participating method that
requires parameter optimization w.r.t. working datasets [31].
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4.4 Continuity and Stability

Continuity analysis examines the range or level of shape defor-
mation that a descriptor can capture. Ideally, retrieved objects
should be ranked according to their similarity to the query.
Note that retrieval performance on a relatively small non-rigid
dataset (typically with hundreds of objects) can often be sensi-
tive to particular attributes of the dataset[31], such as the mesh
resolution and total surface areas that are largely uninteresting
regarding a benchmark study. As a complementary qualitative
example, we show our shape signature has a good performance
with respect to varied 2D shapes. Compared to 3D shapes,
2D shapes have less geometric features (where we empirically
choose less dimensions for shape signatures in experiments)
and their boundary can be very noisy, hence global shapes play
a key role in similarity based retrieval. We gathered the dataset
of 2D contour shapes6 used in [44], which contains four sub-
sets (fighter planes, vehicles and two subsets of MPEG-7 CE
Shape-1 Part-B, 590 images in total). We used existing soft-
ware to triangulate these contour shapes, have them cleaned as
connected manifold meshes with at least 6k vertices. Then we
performed query-based shape retrieval. Note that class labels
of these 2D shapes were not used. A comparative example be-
tween our method and shapeDNA [35] is given in Figure 4,
which shows a ranked list of retrieved shapes when the first
shape is used as the query shape. It is observed from such
results that our method is able to retrieve shapes according to
their global shapes, and the similarity between the query shape
and a retrieved shape in the ranked list continuously decreases
when we move towards the end of the list.

As for stability analysis, we will show the stability of shape
retrieval results when the query shape undergoes deformations.
Here we show by examples (Figure 5) that in addition to de-
formations, our method is also stable when noise and small
holes are added to the shape instances. In our experiments,
varying degrees of zero mean white noise (.1 ∼ .5 average
edge length) were added to vertex positions along their normal
direction and a certain percentage (1% ∼ 3%) of faces were
removed from the query meshes. The retrieval results turned
out to be even more stable than those under deformations.

4.5 Isospectral vs Isometric.

Shape-DNA is known to be identical on isospectral manifolds,
which is a family theoretically larger than isometrics. In fact,
it has already been proven that one cannot “hear the shape
of drum”. There are many examples of isospectral manifolds
which are not isometric. The first example was given in 1964,
and later mathematicians proposed several general construc-
tion techniques [41] to find non-isometric isospectral mani-
folds in two and three dimensions. Perhaps the simplest non-
isometric isospectral shapes are GWW-prisms [16] (Figure 6).

6This dataset can be downloaded at http://visionlab.uta.edu/
shape_data.htm

(a) Retrieval results by shapeDNA, with 8 eigenvalues

(b) Retrieval results by R-BiHDM, with L = 15,m = 60

Figure 4: The result of a query (the first shape) in a 2D shape
dataset, which contains similar shapes under several types of
deformations, including bending, torsion, and partial scaling.

Shape-DNA has self-intersections in the spectral space when a
shape undergoes non-isometric shape deformations, therefore
may not be sufficiently discriminative near those intersections.
In contrast, spectra of the reduced biharmonic distance matri-
ces are clearly different for those non-isometric but isospectral
pairs [10]. It is of interest to ask if it indicates an isometry that
two 2D/3D manifolds have identical R-BiHDM, i.e. not only
their λi, but also aj in eq. (5) are the same.

4.6 Limitations
Our method has a few limitations that need further investiga-
tion. Although it has strength in identifying global non-rigid
shapes, how to enhance our method for retrieving meaningful
partial shapes still remains unknown. Furthermore, it assumes
the surface, which is a 2D manifold, is connected. It is un-
clear how to extend our method for matching and retrieving
complicated models with many disconnected parts.

5 Conclusions
In this paper, we have first given a brief introduction to existing
methods for nonrigid 3D shape retrieval. Our method uses bi-
harmonic distance to construct a context-aware integral kernel
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(a) Original retrieval result

(b) Retrieval result on meshes corrupted with noise(.5) and holes(2%)

Figure 5: Stability test (the first shape is the query). Our re-
trieval results remain stable even when the meshes are cor-
rupted with noise and holes. (Set L = 23, m = 60)

operator on a manifold, then applies modal space restriction to
project this operator into a low-frequency representation, and
finally computes its spectrum. Our method is simple to im-
plement, isometry-invariant, discriminative, and numerically
stable with respect to multiple types of perturbations. Our cur-
rent implementation is based on FEM. We have evaluated our
proposed method on representative datasets, including both the
nonrigid track of SHREC’11 and the nonrigid human track of
SHREC’14. Evaluation results demonstrate that our shape sig-
nature is highly effective in nonrigid shape retrieval.
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A Error Bounds under Deformation
In this section, we investigate error bounds of the spectral sig-
nature of integral kernel operators in the presence of “smooth”
manifold deformations using perturbation theory [14, 18]. The
general result, intuitively speaking, is that the total deviation
of a spectral signature with an arbitrary number of dimensions
is finitely bounded under smooth deformations. Given a gen-
eral matrix A and a perturbation parameter ϵ within a neigh-
borhood of zero, the perturbed matrix is written as A + ϵB,
where B is an arbitrary matrix. In this situation, each eigen-
value or eigenvectors of A + ϵB admits an expansion in frac-
tional powers of ϵ, and the zero-th order term of this expan-
sion is an eigenvalue or eigenvector of the unperturbed matrix
A (Lidskii theorem, 1965 [25]). This is a well known result
in regular perturbation theory. In particular, one can actually
derive a Lipschitz condition number for this continuity:

Theorem A.1 (A special case of Lidskii theorem [18]). As-
suming µ(ϵ) is an eigenvalue of the perturbed matrix A + ϵB
for a sufficiently small ϵ, it admits a first-order expansion

µ(ϵ) = µ+
∥∥ΦTBΦ

∥∥
max

ϵ+ o(ϵ),

where Φ is the eigenvector of A corresponding to eigen-
value µ, A and B are conjugated matrices, ∥·∥max repre-
sents the largest singular value. The first-order coefficient∥∥ΦTBΦ

∥∥
max

is called the Lipschitz condition number.

For the rest of this section, A is called characterization,
and B is called perturbation. The Lipschitz condition num-
ber characterizes the total amount of deviation in a signature
with respect to a certain amount of perturbation. In the ideal
case of isometric perturbation, where A is isometric and B is
zero, the Lipschitz condition number is degenerated. Let M
and M ′ be two compact manifold domains, and H and H ′ be
the spaces of bounded and continuous linear functionals de-
fined on M and M ′. In the current context, we consider M ′

as a “gently” deformed version of M . We assume that im-
plicitly there exists a matching (or registration) between these
two domains such that it induces a mapping between H and
H ′, which is a closed and densely defined operator D from H
to H ′. The characterization of this mapping is a self-adjoint
operator O. Suppose O′(ϵ) has a first-order approximate per-
turbed (infinitely-dimensional) matrix representation A + ϵB
with respect to an underlying domain deformation Dϵ.
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Definition A.1 (perturbated (α, p)-smoothness). Consider a
perturbated matrix A+ ϵB with a spectral family {µi(ϵ)} ad-
mitting first-order expansions: µi(ϵ) = µi+

∣∣ϕT
i Bϕi

∣∣ ϵ+o(ϵ).
A+ ϵB is perturbated (α, p)-smooth if

∥∥A−α
2 BpA−α

2

∥∥
1
=:

∞∑
i=1

|µi|−α ∥∥ϕT
i Bϕi

∥∥p < C(α, p),

for some α ≥ 0 and p > 0, where ∥·∥1 is Schatten p-norms.

Perturbed smoothness actually admits a substantially larger
class of deformations of practical interest. It allows the charac-
terization to be varied with respect to the domain deformation,
but it bounds the amount of deviation.

Theorem A.2 (Error bound of spectral signature). Consider
a discrepancy function for a pair of original and perturbed
spectra

dn(µ, µ
′;α, p) :=

n∑
i=1

|µi|−α |µi − µ′
i|
p
,

and two Hilbert spaces H and H ′ admitting a perturbation
path Dϵ for ϵ ∈ [0, 1]. If the perturbation path is uniformly
perturbed (α, p)-smooth with a bound C(α, p) with respect to
a characterization operator O(ϵ), and order preserving, aka
µi ≥ µj ⇐⇒ µ′

i ≥ µ′
j for any i, j, we have

dn(µ, µ
′;α, p) ≤ κ−αC(α, p), ∀n

where κ = max
i

{
∣∣∣ µi

µi+1

∣∣∣ , ∣∣∣µi+1

µi

∣∣∣}.

Proof. (Sketch) Take the integral w.r.t ϵ: µ′
i − µi =

∫ 1

0
dµi(ϵ)

and use the condition of perturbated (α, p)-smoothness (Defi-
nition A.1).

Integral Kernel Operator. Experimental evidences sug-
gest that distance maps/matrices, more generally, integral op-
erators, could be a useful source for shape descriptor construc-
tion, and are potentially better than differential operators (e.g.,
LBO). As a rigorous treatment justifying the capability of in-
tegral kernel operators, we establish another definition for the
smoothness of perturbations:

Definition A.2 (α-Hölder class of perturbed kernel). Consider
integral kernel operator kϵ(·, ·) with perturbation parameter ϵ,
and define the perturbed kernel

γϵ(x, y; k) =
1

ϵ
(kϵ(x̃, ỹ)− k(x, y)),

where (x̃, ỹ) ∈ M ′(ϵ) is the perturbed version of (x, y) ∈ M .
Let dM be the geodesic distance on M . If there exists C > 0
such that

|γϵ(x, y; k)− γϵ(x, z; k)| ≤ Cα · dM (y, z)α,

and
|γϵ(x, y; k)| ≤ Cα,

∀x ∈ M and any ϵ > 0 in a sufficiently small neighborhood
of zero.

Remark. If k(·, ·) = dM (·, ·), the infimum of bound Cα that
makes kϵ’s perturbed kernel belong to α-Hölder class, aka

C∗
α := sup

x,y,z,ϵ

{
|γϵ(x, y; k)− γϵ(x, z; k)|

dαM (·, ·)
, |γϵ(x, y; k)|

}
,

is a “natural” quantity indicator of deformations.

In the sequel, we connect α-Hölder class of perturbed kernel
with perturbed smoothness.

Theorem A.3 (main result). Given an integral kernel operator
K as described in Section 2.2, we assume the distance map is
in accordance with the geodesics of power q, aka, there exist
positive constants C1, C2 and some δ ≥ 0 such that

C1/n
1+q+δ ≤ λn(k) ≤ C2/n

1+q, ∀n, (12)

for some integer q ≥ 1.
If its perturbed kernels with respect to a class of deforma-

tions, i.e. γϵ(·, ·; k), are of ε-Hölder class (Definition A.2) for
some 1 ≥ ε > 0, K or the transformed operator K̃ = ΦTKΦ
(Section 2.2 Equation 3), as a characterization of the deformed
manifold M ′(ϵ), is perturbed (α, p)-smooth (Definition A.1)
as long as

(
1

2
+ ε)p > (1 + q + δ)α+ 1.

Thus, spectral signatures (with an arbitrary number of dimen-
sions) of both K and K̃ have finite error bounds under smooth
manifold deformations (Theorem A.2).

Proof. For a general Hilbert-Schmidt operator k satisfying
uniformly ε-Hölder condition, it has already been shown in
[34] that the decay rate of eigenvalues of k(x, y) is at least
O(n−1/2−ε). And if k is positive definite, the decay rate is
improved to at least O(n−1−ε). It immediately follows that
for ε > 1

2 , ε-Hölder continuous kernel γϵ is perturbed (0, 1)-
smooth.

For α > 0, we require the eigenvalues of the characteriza-
tion kernel have lower bounds on its decay rate. It is gener-
ally not true, for example if k(x, y) = dM (x, y)2, the result-
ing Gram matrix has a finite number of nonzero eigenvalues if
sample points are uniformly drawn from the Euclidean space.
But it is typically tangible, as preliminary work has shown ex-
amples where condition (12) holds when k(x, y) = dM (x, y)
(e.g. see [7, 11] examples). Then following the main result on
Hölder condition and the decay of eigenvalues [34], one has
|λn(γϵ)|p

|λn(k)|α
∼ O(n−( 1

2+ε)p+α(1+q+δ)).
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B Spectral Convergence of R-BiHDM
Since we know eigenvalues of the Laplace-Beltrami operator
follow λm ∼ 4π

A m for surfaces (Weyl-Asymptotic growth of
eigenvalue [45]), we can therefore deduce the convergence of
a spectral sequence under weak assumptions. Note ∥·∥ always
denotes the L2-norm of a vector, a function or a matrix, by
default.

Lemma 1. Let A ∈ Cn×n be an Hermitian matrix,
and let (λ̂, x̂) be the computed approximation of an eigen-
value/eigenvector pair (λ, x) of A. By defining the residual

r̂ = Ax̂− λ̂x̂, x̂ ̸= 0,

it follows that

min
λi∈σ(A)

∣∣∣λ̂− λi

∣∣∣ ≤ ∥r̂∥2
∥x̂∥2

.

Proof. See [32] page 195.

Theorem B.1 (Spectral Convergence). Let K̃m be an (m +
1) × (m + 1) square matrix formed by the following steps: i)
take the first m + 1 rows and first m + 1 columns of K̃; ii)
when calculating each aj in this truncated matrix, every in-
finite summation in (5) is approximated by the first m terms.
Set µ(m)

i be the i-th eigenvalue of K̃m, for i ≤ m + 1 and
µi(m) = 0, for any i > m + 1. Let fm =

√
A
∑m

i=1 ϕ
2
i /λ

2
i

converge (pointwisely) to f . If f is bounded and square inte-
grable, i.e. eigenpairs {(λi, ϕi)}∞i=1 satisfy

∞∑
i=1

∥∥ϕ2
i

∥∥2
λ4
i

< ∞, (13)

it then follows that for any i,

µ
(m)
i → µi, as m → ∞.

Proof. By definition, we have K̃m+n − K̃m−1 =

m+n∑
k=m



2
λ2
k

Ck,1

λ2
k

. . .
Ck,m−1

λ2
k

0 . . . a
(m+n)
k . . .

Ck,1

λ2
k

0

...
. . .

Ck,m−1

λ2
k

0

0 0
...

. . .
a
(m+n)
k − 2

λ2
k

...
. . .


,

where extra rows and columns of zeros are padded to K̃m−1,
and

Cm,j =
√
A

∫
M

ϕ2
mϕj ,

which is the Fourier coefficient of
√
Aϕ2

m w.r.t series
{ϕj}m−1

j=1 . By Bessel’s inequality we have 1+
∑m−1

j=1 C2
m,j ≤

A
∥∥ϕ2

m

∥∥2, and we also have

∑m+n
k=m

∣∣∣a(m+n)
k

∣∣∣2 ≤
∑∞

k=m

∣∣∫
M

fm+nϕk

∣∣2
≤ ∥fm+n − f∥2 +

∑∞
k=m

∣∣∫
M

fϕk

∣∣2 .
By assumptions about f and the norm convergence of
Fourier series (as shown for example in [1]), we know that
∥fm+n − f∥2 → 0 and

∑∞
k=m

∣∣∫
M

fϕk

∣∣2 → 0 as m → ∞.
Since the L2-norm of a matrix is less than its Frobenius norm,
we have∥∥∥K̃m+n − K̃m−1

∥∥∥2
2

≤
∑m+n

k=m

(
2
λ4
k
(4 +

∑m−1
j=1 C2

k,j) + 2
∣∣∣a(m+n)

k

∣∣∣2)
≤

∑m+n
k=m

(
2
λ4
k
(3 +A

∥∥ϕ2
k

∥∥2) + 2
∣∣∣a(m+n)

k

∣∣∣2) → 0

,

as m → ∞. By Lemma 1, we have

∣∣∣µ(m+n)
i − µ

(m−1)
i

∣∣∣ ≤

∥∥∥(K̃m+n − K̃m−1)u
(m+n)
i

∥∥∥∥∥∥u(m+n)
i

∥∥∥
≤

∥∥∥K̃m+n − K̃m−1

∥∥∥
2

for any i < m, where u
(m)
i is the eigenvector associated with

µ
(m)
i of K̃m. {µ(m)

i }∞m=1 is a Cauchy sequence, that con-
verges.

Note that the condition, i.e. Eq. (13), used in the spectral
convergence theorem is rather weak. Observe that for two-
dimensional Riemannian manifold M , f(x) is given by the
green function G(x, y) with f(x) := G(x, x). If M is a com-
pact manifold (without boundary), it satisfies that G(x, y) is
bounded [6], hence f(x) is also bounded for any x ∈ M . So
is ∥f∥2 (square integrable). An experimental validation is also
provided in Fig. 7.

C Matrices for Linear and Cubic FEM
Here we provide elementary matrices used in linear and cubic
FEM. Every FEM has its own set of nodes. There is a finite
element associated with every node. The finite element at a
specific node is a piecewise polynomial basis function whose
value is equal to 1 at the node and 0 at all other nodes. The
support of a basis function includes all triangle faces surround-
ing the node corresponding to the basis function. Consider a
triangle face in a mesh with two node configurations shown
in Figure 8. These node configurations are defined for linear
and cubic FEM, respectively. Each node in either configura-
tion is associated with a piecewise linear or cubic polynomial
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Figure 7: A experimental validation: convergence of the first
30 eigenvalues of an R-BiHDM.

basis function. If we focus on a triangle face, an arbitrary bi-
variate polynomial over the triangle face can be defined as a
linear combination of the basis functions associated with the
nodes either inside or on the edges of the triangle. This poly-
nomial can interpolate arbitrary prescribed values at the nodes.
It reduces to a univariate polynomial along each triangle edge.
The two polynomials defined over two adjacent triangles agree
with each other along their shared triangle edge. The stiff and
mass matrices used in FEM are given as follows.

l1(T )

l2(T )

l3(T )

T1

T2

T3

T

(a) linear element

l1(T )

l2(T )

l3(T )

T1

T4

T5

T2

T6

T7

T3

T8

T9
T10

T

(b) cubic element

Figure 8: Node configuration of linear and cubic FEM

J1 =
1

8

 2 −1 −1
−1 0 1
−1 1 0

 J2 =
1

8

 0 −1 1
−1 2 −1
1 −1 0


J3 =

1

8

 0 1 −1
1 0 −1
−1 −1 2

 J4 =
1

12

2 1 1
1 2 1
1 1 2


Table 6: The four matrices of integrals on the unit triangle for
linear FEM.

Lij(T ) =
1

a(T )

(∑3
k=1 l

2
k(T )Jk (ti, tj)

)
, i, j ∈ N(T )

Dij(T ) = a(T )J4 (ti, tj) , i, j ∈ N(T )

Lij(T ) = Dij(T ) = 0, i, j ̸∈ N(T )

J1 =
1

320



0 7 −7 57 −24 0 0 24 −57 0
7 0 −7 −24 57 −57 24 0 0 0
−7 −7 68 −6 −6 30 −51 −51 30 0
57 −24 −6 135 54 27 27 27 −135 −162
−24 57 −6 54 135 −135 27 27 27 −162
0 −57 30 27 −135 135 −108 −27 −27 162
0 24 −51 27 27 −108 135 135 −27 −162
24 0 −51 27 27 −27 135 135 −108 −162
−57 0 30 −135 27 −27 −27 −108 135 162
0 0 0 −162 −162 162 −162 −162 162 324



J2 =
1

320



0 −7 7 −57 24 0 0 −24 57 0
−7 68 −7 30 −51 −51 30 −6 −6 0
7 −7 0 0 0 24 −57 57 −24 0

−57 30 0 135 −108 −27 −27 27 −135 162
24 −51 0 −108 135 135 −27 27 27 −162
0 −51 24 −27 135 135 −108 27 27 −162
0 30 −57 −27 −27 −108 135 −135 27 162

−24 −6 57 27 27 27 −135 135 54 −162
57 −6 −24 −135 27 27 27 54 135 −162
0 0 0 162 −162 −162 162 −162 −162 324



J3 =
1

320



68 −7 −7 −51 30 −6 −6 30 −51 0
−7 0 7 24 −57 57 −24 0 0 0
−7 7 0 0 0 −24 57 −57 24 0
−51 24 0 135 −108 27 27 −27 135 −162
30 −57 0 −108 135 −135 27 −27 −27 162
−6 57 −24 27 −135 135 54 27 27 −162
−6 −24 57 27 27 54 135 −135 27 −162
30 0 −57 −27 −27 27 −135 135 −108 162
−51 0 24 135 −27 27 27 −108 135 −162
0 0 0 −162 162 −162 −162 162 −162 324



J4 =
1

6720



76 11 11 18 0 27 27 0 18 36
11 76 11 0 18 18 0 27 27 36
11 11 76 27 27 0 18 18 0 36
18 0 27 540 −189 −135 −54 −135 270 162
0 18 27 −189 540 270 −135 −54 −135 162
27 18 0 −135 270 540 −189 −135 −54 162
27 0 18 −54 −135 −189 540 270 −135 162
0 27 18 −135 −54 −135 270 540 −189 162
18 27 0 270 −135 −54 −135 −189 540 162
36 36 36 162 162 162 162 162 162 1944


Table 7: The four matrices of integrals on the unit triangle for
cubic FEM.

and

L =
∑
T

L(T ), D =
∑
T

D(T ),

where T denotes a triangle face, N(T ) denotes the set of in-
cidence nodes on T , ti denotes the local index (used for T ) of
the i-th node used in the FEM, lk(T ) (k = 1, 2, 3) denotes the
length of the k-th edge of T , a(T ) denotes the area of T , and
Jk(ti, tj) denotes the entry with indices (ti, tj) of the matrix
Jk. Jk (k = 1, 2, 3, 4) for linear and cubic FEM are given
in Table 6 and Table 7 respectively. Details on the construc-
tion of Jk can be found in [50]. Note that these matrices are
assembled triangle-wise rather than element-wise in a typical
implementation.


