Skip to main content
Log in

Water simulation using a responsive surface tracking for flow-type changes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The realistic simulation of fluids largely depends on a temporally coherent surface tracking method that can deal effectively with transitions between different types of flows. We model these transitions by constructing a very smooth fluid surface and a much rougher, splashy surface separately, and then blending them together in proportions that depend on the flow speed. This allows creative control of the behavior of the fluids as well as the visual results of the simulation. We overcome the well-known difficulty of obtaining smooth surfaces from Lagrangian particles by allowing them to carry normal vectors as well as signed distances from the level set surface and by introducing a new surface construction algorithm inspired by the moving least-squares method. We also implemented an adaptive form of the fluid-implicit-particle method that only places particles near visually interesting regions, which improves performance. Additionally, we introduce a novel subgrid solver based on the material point method to increase the amount of detail produced by the FLIP method. We present several examples that show visually convincing water flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://github.com/kotsoft/.

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26(3), 48 (2007)

  2. Ando, R., Tsuruno, R.: A particle-based method for preserving fluid sheets. In: SCA ’11 Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 7–16 (2011). doi:10.1145/2019406.2019408

  3. Ando, R., Thürey, N., Tsuruno, R.: Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Vis. Comput. Graph. 18, 1202–1214 (2012). doi:10.1109/TVCG.2012.87

    Article  Google Scholar 

  4. Ando, R., Thürey, N., Wojtan, C.: Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. 32(4), 103 (2013)

    Article  MATH  Google Scholar 

  5. Bhatacharya, H., Gao, Y., Bargteil, A.: A level-set method for skinning animated particle data. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 17–24. ACM (2011)

  6. Boyd, L., Bridson, R.: MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graph. 31(2), 16 (2012)

    Article  Google Scholar 

  7. Brackbill, J.U., Ruppel, H.M.: FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65(2), 314–343 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1), 83–116 (2002)

  9. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. 21(3), 736–744 (2002)

    Article  Google Scholar 

  10. Guo, Y.J., Nairn, J.A.: Three-dimensional dynamic fracture analysis using the material point method. Comput. Model. Eng. Sci. 16(3), 141 (2006)

    Google Scholar 

  11. Hong, W., House, D.H., Keyser, J.: An adaptive sampling approach to incompressible particle-based fluid. In: EG UK Theory and Practice of Computer Graphics (2009)

  12. Hong, J.M., Kim, C.H.: Discontinuous fluids. ACM Trans. Graph.24(3), 915–920 (2005)

  13. Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles alive. ACM Trans. Graph. 27(3), 48 (2008)

  14. Hong, J.M., Shinar, T., Fedkiw, R.: Wrinkled flames and cellular patterns. ACM Trans. Graph. 26(3), 1–47 (2007)

  15. Ianniello, S., Di Mascio, A.: A self-adaptive oriented particles Level-Set method for tracking interfaces. J. Comput. Phys. 229(4), 1353–1380 (2010)

  16. Jung, H.R., Kim, S.T., Noh, J., Hong, J.M.: A heterogeneous CPU–GPU parallel approach to a multigrid poisson solver for incompressible fluid simulation. Comput. Anim. Virtual Worlds 24(3–4), 185–193 (2013)

  17. Kim, B., Liu, Y., Llamas, I., Jiao, X., Rossignac, J.: Simulation of bubbles in foam with the volume control method. In: ACM Transactions on Graphics (TOG), vol. 26, p. 98. ACM (2007)

  18. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupledSPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

    Article  Google Scholar 

  19. Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  MathSciNet  Google Scholar 

  20. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 154–159. Eurographics Association (2003)

  21. Nielsen, M.B., Østerby, O.: A two-continua approach to eulerian simulation of water spray. ACM Trans. Graph. 32(4), 67 (2013)

    Article  MATH  Google Scholar 

  22. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2002)

    MATH  Google Scholar 

  23. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  24. Shen, C., O’Brien, J.F., Shewchuk, J.: Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 23(3), 896–904 (2004)

  25. Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Anim. Virtual Worlds 18(1), 69–82 (2007)

    Article  Google Scholar 

  26. Stam, J.: Stable fluids. In: Proceedings. of SIGGRAPH 99, pp. 121–128 (1999)

  27. Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material point method (mpm). Int. J. Numer. Methods Eng. 76(6), 922–948 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. 32(4), 102 (2013)

    Article  MATH  Google Scholar 

  29. Sulsky, D., Schreyer, H., Peterson, K., Kwok, R., Coon, M.: Using the material-point method to model sea ice dynamics. J. Geophys. Res. Oceans (1978–2012) 112(C2), C02S90 (2007). doi:10.1029/2005JC003329

  30. Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)

    Article  MATH  Google Scholar 

  31. Thürey, N., Wojtan, C., Gross, M., Turk, G.: A multiscale approach to mesh-based surface tension flows. ACM Trans. Graph. 29(4), 1–48 (2010)

  32. Wojtan, C., Thürey, N., Gross, M., Turk, G.: Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29(4), 50 (2010)

    Article  Google Scholar 

  33. Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. 32(1), 5 (2013)

    Article  MATH  Google Scholar 

  34. Zhang, D.Z., Zou, Q., VanderHeyden, W.B., Ma, X.: Material point method applied to multiphase flows. J. Comput. Phys. 227(6), 3159–3173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74(250), 603–627 (2005)

  36. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005)

Download references

Acknowledgments

This work was supported by the research program of Dongguk University, 2015, the National Research Foundation of Korea (NRF-2011-0023134), and the Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2012 (RST201100017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Mo Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JG., Kim, BJ. & Hong, JM. Water simulation using a responsive surface tracking for flow-type changes. Vis Comput 32, 641–651 (2016). https://doi.org/10.1007/s00371-015-1080-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1080-4

Keywords

Navigation