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Abstract We describe a method to compute the inter-

nal parameters (focal and principal point) of a camera

with known position and orientation, based on the ob-

servation of two or more conics on a known plane. The

conics can even be degenerate (e.g., pairs of lines). The

proposed method can be used to re-estimate the inter-

nal parameters of a fully calibrated camera after zoom-

ing to a new, unknown, focal length. It also allows to es-

timate the internal parameters when a second, fully cal-

ibrated camera observes the same conics. The param-

eters estimated through the proposed method are co-

herent with the output of more traditional procedures,

that require a higher number of calibration images. A

deep analysis of the geometrical configurations that in-

fluence the proposed method is also reported.

Keywords Camera calibration · Conics · Degenerate

conics · Ellipses · Zoom lens · Line detection

1 Introduction

Camera calibration represents a fundamental topic in

computer vision and several approaches to calibration

have been consequently proposed, involving controlled

camera motion [1] as well as 3D objects of known shape,

planar patterns and 1D objects [2]. In particular, lines

and points represent widely employed calibration fea-

tures because of the simplicity to identify them in the

images [2,3] and because they are commonly found in
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many man-made environments. Calibration generally

requires to move a calibration tool in the scene while

the camera takes images; image features are then ex-

tracted and used to estimate the camera internal and

external parameters. For instance the widely adopted

Zhang’s method [3,4] employ a planar checkerboard and

it uses homographies that put in relation the checker-

board corners in the acquired images.

Several authors noticed that conics convey more in-

formation and consequently achieve a more accurate

calibration [5–10]. Generally speaking, a planar conic in

3D space (described by a 3× 3 matrix C) is projected

into a conic HTCH onto the camera image plane, where

H is the homography that relates the plane of the conic

and the camera image plane [5–7]. Putting in relation

two ore more confocal or co-axial conics, or conics in

known position, H is estimated and camera parameters

are derived from its decomposition [2]. Other authors

use the absolute conic and its dual instead of conics

in the real set up; they obtain a set of constraints and

derive from these the internal camera parameters [8].

Because of the noise on the measured positions of

the features, lots of images are generally needed to re-

liably calibrate a camera [2]. On the other hand, when

zooming with a calibrated camera, only partial cam-

era recalibration is needed: less parameters have to be

estimated and old calibration pararmeters can be prof-

itably used to obtain a reliable recalibration from few

or even just one image [5,11,12]. In this context, we

describe a method to compute the internal parameters

of a camera after zooming, based on the observation of

at least two conics from the camera itself and from an

additional, calibrated camera. This can be either the

same camera before zooming or a different one. The

method can be applied using nondegenerated or degen-

erated conics, but we have focused our attention on
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pairs of lines because they are easily identifiable in a

lot of man-made environments. The experimental re-

sults reported here demonstrate that, by using at least

four conics, only one image is sufficient to re-calibrate

the camera with an accuracy similar to that obtained

with the Zhang’s method [3,4].

2 Method

2.1 Preliminaries

Let us consider two cameras observing a set of M ≥ 2

conics, {Cj}j=1..M ; the 3 × 4 projection matrix of the

i-th camera is given by [13]:

Pi = Ki

[
RT

i −RT
i ti
]
, Ki =

 fi 0 px,i
0 fi py,i
0 0 1

 , (1)

where T is the transpose operator, Ki describes the

camera internal parameters (focal length fi, camera

principal point [px,i py,i]
T ), Ri is a 3 × 3 camera ro-

tation matrix and ti is the 3 × 1 vector of the camera

optical center; we are assuming the pixels to be square.

The projection [u v w]T of a 3D point [X/U Y/U Z/U ]T

is given, in homogeneous coordinates, by:

[u v w]T = Pi[X Y Z U ]T ; (2)

no distortion is assumed to be present, since most of

imaging devices include a lens model in their firmware

and distortions are automatically removed [14–17].

In our scenario we assume that, when the barrel of

the zoom lens rotates to change the focal length, the

body of the camera 1 remains still while the optical

center t1 moves along the optical axis, given by the

third column of R1. The position of the camera optical

center after zooming, t̃1, is given by:

t̃1 = t1 + R1

[
0 0 δ

]T
, (3)

where δ is the change of focal length, in mm, and it is

obtained here by comparing the exif data automatically

registered in the acquired picture files by the digital

camera [17], before and after zooming. The correspond-

ing projection matrix will be indicated in the following

as P̃1 = K̃1

[
RT

1 −RT
1 t̃1
]
. For the camera 2, let us sup-

pose that t2 = [0 0 0]T , R2 = I3 is the 3 × 3 identity

matrix and [px,2 py,2]T = [0 0]T ; such conditions can

always be satisfied with a change of reference frame,

without loss of generality.

Let us consider now the set of conics {Cj}j=1..M .

The projection of a conic is a conic [13] and the equation

of Cj onto the image plane of the i-th camera is:[
u v w

]
Ci,j

[
u v w

]T
= 0, (4)

where Ci,j is the 3× 3 symmetric matrix of the conic.

The cone associated to Cj with vertex in the center of

the i-th camera is then:[
X Y Z U

]
PT

i Ci,jPi

[
X Y Z U

]T
= 0. (5)

C1,j and C2,j are then related by:

DT P̃T
1 C1,jP̃1D = ρjC2,j , D =


1 0 0

0 1 0

0 0 f2
dx dy dzf2

 , (6)

where ρj is an arbitrary scale factor whereas dx, dy and

dz are the parameters of the plane of the conics (i.e.

dxZ+dyY +dzZ = U) in the reference frame of camera

2. In fact, if we eliminate U from Eq. (5), by using the

above equation of the plane, we get the equation of a

cone, having vertex in t2, and projecting Cj from t2.

By cutting such cone with the plane Z = f2U , we get

the conic observed by camera 2. Hence, up to a scalar

factor, the matrix of this conic is the first member of

Eq. (6). Rearranging the terms in Eq. (6) we get:

K̃T
1 C1,jK̃1 = (7)

ρj
[[

RT
1 −RT

1 t̃1
]
D
]−T

C2,j

[[
RT

1 −RT
1 t̃1
]
D
]−1

where −T indicates the inverse transpose. The left and

right members in Eq. (7) represent two 3×3 symmetric

matrices and it poses six constraints on the parameters

of the j-th conics observed by cameras 1 and 2.

2.2 Re-calibration using two cameras

We start describing the general case of a two cameras:

we assume that camera 2 is fully calibrated, the position

and orientation of the camera 1 are known and C2,j

and C1,j have been measured by some standard conic

fitting method (see e.g. [19]). The internal parameter of

the camera 1 have to be estimated. The right member

in Eq. (7) is therefore known, but for the scale factor

ρj , and we can define a 3×3 symmetric matrix B2,j as:

B2,j =
[[

RT
1 −RT

1 t̃1
]
D
]−T

C2,j

[[
RT

1 −RT
1 t̃1
]
D
]−1

.(8)

For the conic Cj , the constraints induced by Eq. (7)

are:

c11f̃
2
1 = ρjb11

c12f̃
2
1 = ρjb12

c22f̃
2
1 = ρjb22

c11p̃x,1f̃1 + c12p̃y,1f̃1 + c13f̃1 = ρjb13
c21p̃x,1f̃1 + c22p̃y,1f̃1 + c23f̃1 = ρjb23
c11p̃

2
x,1 + c22p̃

2
y,1 + 2c12p̃x,1p̃y,1 + ...

...2c13p̃x,1 + 2c23p̃y,1 + c33 = ρjb33

(9)

where crs and brs indicate the element in position (r, s)

in C1,j and in B2,j ; f̃1, p̃x,1 and p̃y,1 are the unknown
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internal parameters of camera 1 and the index of the

conic j has been omitted for notation simplicity, but for

the scale factor ρj .

Let us discuss the solution of Eqs. (9). If the mea-

sured data are exact, for each observed conic the first

three equations of (9) are the same and they only allow

to eliminate the scale factor ρj . After eliminating ρj
the last three equations become three quadratic equa-

tions having a finite number of common solutions (see

also the Discussion at the end of the paper). This is

the reason why, even in absence of noise, it is not pos-

sible to achieve the required solution by using only one

conic. On the other hand, considering M ≥ 2 conics

we get a non-linear system with 6M equations and

3 + M unknowns that can be solved in a least squares

sense through an iterative method (like the Levenberg-

Marquardt algorithm [23]) to estimate f̃1, p̃x,1, p̃y,1 and

{ρj}j=1..M , and therefore to re-calibrate camera 1 after

zooming.

Alternatively, we also suggest here a simpler ap-

proach, as we noticed that a proper combinations of

equations (9) allows to achieve a linear solution to the

same problem. From the first equation we get ρj/f̃1 =

f̃1c11/b11; dividing then by f̃1 the fourth equation, sub-

stituting ρj/f̃1 and multiplying by b11, we get a linear

equation in f̃1, p̃x,1, p̃y,1:

c11b11p̃x,1 + c12b11p̃y,1 − c11b13f̃1 = −c13b11. (10)

As it will be clear in the final discussion of section

4, we can ignore the last equation but for the case in

which all the observed conics are pairs of parallel lines

or parabolas, which will be assumed in the sequel. Ne-

glecting the last equation in (9) and combining in the

same manner each of the first three equations with the

fourth and fifth equations of the system, we finally get

the following linear system for each conic:

c11b11 c12b11 −c11b13
c11b12 c12b12 −c12b13
c11b22 c12b22 −c22b13
c12b11 c22b11 −c11b23
c12b12 c22b12 −c12b23
c12b22 c22b22 −c22b23


 p̃x,1p̃y,1
f̃1

 =



−c13b11
−c13b12
−c13b22
−c23b11
−c23b12
−c23b22

 . (11)

Let us indicate with Θj the matrix on the left in Eq.

(11) and with mj the vector on the right. Considering

M ≥ 2 conics, we get the following system with 6M

equations and 3 unknowns:

Θ

px,1py,1
f1

 = m, Θ =


Θ1

Θ2

. . .

ΘM

 , m =


m1

m2

. . .

mM

 , (12)

that can be solved in a least squares sense to get a linear

estimate of f̃1, p̃x,1 and p̃y,1 as:[
p̃x,1 p̃y,1 f̃1

]T
=
(
ΘTΘ

)−1
ΘTm. (13)

Notice that the linear equations generated from (9)

are similar to the ones considered in [8]. In this ar-

ticle, however, the authors compare different views of

the absolute conic, assuming that the homography be-

tween the views is known. Our approach does not need

the knowledge of the homography and allows a more

accurate and geometrical analysis of the critical config-

urations (see section 4).

2.3 Re-calibration using a single camera

In this scenario, camera 2 and camera 1 are actually

the same camera before and after zooming; starting

from a fully calibrated camera, a zoom is performed

without moving the camera and re-calibration is needed

to update the internal camera parameters. Under this

hypothesis we have t̃1 = [0 0 δ]
T

and t2 = [0 0 0]
T

,

whereas R1 = R2 = I3 and the terms in Eq. (8) can be

computed as:

[
RT

1 −RT
1 t̃1
]
D =

 1 0 0

0 1 0

−δdx −δdy 1− f2δdz

 ; (14)

this highlights that in this scenario B2,j does not de-

pend on the absolute camera orientation R1 and posi-

tion t1, but only on the relative position and orientation

of the plane of the conics with respect to the camera.

Also in this case, Θ and m in Eq. (12) can be derived

and used to estimate f̃1, p̃x,1, p̃y,1 after zooming.

Alternatively, the estimate of the camera parame-

ters can be performed by iteratively solving the non

linear system in Eqs. (9), using in this case all the 6

equations in the system (whereas the last equation is

neglected in the linear solution described above).

3 Results

3.1 Experimental setup and calibration

The method has been first tested in the scenario includ-

ing a pair of cameras using a Nikon D3100, acquiring

images of 4608 × 3072 pixels and equipped with a 18-

55mm f/3.5-5.6GII AF-S DX Nikkor zoom lens; and a

Pentax K-r, acquiring images of 4288× 2848 pixels and

equipped with a SMC Pentax-DA L 18-55mm F3.5-5.6

AL zoom lens. The cameras were positioned on tripods,

roughly tilted 20◦ low at 3.5m of distance one from the

other and 1.5m high with respect to the floor; their

optical axes were convergent with an angle of approx-

imately 70◦. Each camera looked at the floor, where

tiles of 0.6m × 0.6m were present, observing at least

3 × 3 tiles at the maximum focal length (55mm). The
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tile borders were highlighted by a red pencil, for a to-

tal of 4 × 4 red lines. Six lines of white adhesive tape,

approximately parallel to the red lines, were further-

more stitched to the floor to increase the number of

available lines (see Fig. 1). A total of 14 lines (and the

corresponding sets of degenerate conics with no lines in

common) were available to test the method.

Different focal lengths were considered for each cam-

era: {45mm, 38mm, 31mm, 24mm} for the Nikon cam-

era and {25mm, 48mm} for the Pentax camera. Ex-

treme focal values were not considered because the field

of view was too narrow or too large in that cases. For

each focal length and for each camera, the red and white

segments on the floor were identified through the fol-

lowing procedure. For the red lines, an image ir(x, y)

with enhanced red areas was obtained subtracting the

green and blue channels from the red one and filtering

the image with a Gaussian filter of size 15×15 and σ = 4

pixels. For the white lines, we filtered in the same man-

ner the sum of the three color channels to get iw(x, y).

Then we clicked on the acquired images to roughly iden-

tify the area including the set of 4×4 red segments (Fig.

1a); from this initial guess, the 8 red segments and the

6 white segments in the images were estimated by max-

imizing the average value of ir(x, y) and iw(x, y) along

the segments. Typical results are shown in Fig. 1; the

typical fitting errors observed on the available images

were approximately of 5 pixels in the worst cases, as

shown in Fig. 1c-d.

For each camera and for each focal length, we com-

puted the internal camera parameters though a cali-

bration procedure inspired by bundle adjustment [27].

Calibration was performed considering all focals of both
cameras together, including as much as possible a-priori

information into the calibration process. This reduces

the number of unknowns and increases the accuracy on

the estimated parameters [28,29]. A similar approach

was adopted for instance in PTZ camera calibration

[29]. Coherently with the hypotheses in [28] and with

those of our method, we assume here that the camera

orientation Ri does not change when the focal length

changes, and that the camera optical center moves in

the direction indicated by the third columns of Ri by

a quantity indicate in the exif data of the acquired pic-

ture. For each camera and each focal length, 30 pic-

tures of a 7 × 5 checkerboard in random positions and

orientation were acquired and a first guess calibration

was performed though the Matlab Calibration Tool-

box [4]. Starting from the same data and this initial

guess, calibration was performed by minimizing the sum

of two error components. The first one is the projec-

tion error of the checkerboard points onto the cam-

era image plane, assuming that the camera orientations

Table 1 Internal parameters of the Nikon and Pentax cam-
eras used to test the method, at different focal lengths.

Camera Focal f [pixel] cx [pixel] cy [pixel]
Nikon D3100 24mm 4667 2330 1607
Nikon D3100 31mm 6009 2333 1627
Nikon D3100 38mm 7704 2295 1627
Nikon D3100 45mm 8710 2301 1623
Pentax K-r 35mm 6422 2178 1408
Pentax K-r 48mm 8221 2184 1414

{Ri}i=0..1 does not change with camera focals, and that

the position of the camera optical center is given by

tfi = t̃i + Ri[0 0 δtfi ]T , where δtfi is the focal length

provided by the exif data and t̃i is unknown. In the

second error component, the projection error of the in-

tersections of the red lines on the floor (whose position

defines the absolute reference frame in Fig. 1) is con-

sidered; this allows to refer the camera positions and

orientations for each focal length to the same reference

frame. After calibration, the residual 2D errors were

characterized by a standard deviation of 0.2 pixels for

the checkerboard points and 2.3 pixels for the second

error component.

The calibration parameters computed in this man-

ner were assumed as the ground truth for the following

experiments and they are reported in Table 1. Notice

that the principal point [px py]
T

of the Nikon camera

varied significantly (more than 35 pixels) for different

focal lengths, thus justifying the need to re-compute it

after zooming [11,16,17,21].

3.2 Re-calibration using a single camera

From the red and white lines identified in the images

at each zoom focal length, we built sets of 2 ≤ M ≤ 7

degenerate conics with no lines in common; for each

value of M , we built combinations of conics from the

14 available lines and we estimated the internal param-

eters of the Nikon camera for each possible pair of fo-

cal lengths, solving the linear system in (12) in a least

squares sense and the non linear system in (9) through

the Levemberg-Marquardt iterative algorithm. Each set

of M conics was furthermore divided in subsets com-

posed by conics including pairs of parallel, vertical lines

(v); pairs of parallel, horizontal lines (h); and pairs of

orthogonal lines (o) (see Fig. 1b).

For eachM(v, h, o), Table 2 reports the median value,

the Inter Quartile Range (IQR) and the 95th percentile

of the absolute errors on the estimated focal length:

ef = 100(f̃1 − f1)/f1,

where f̃1 is the estimated focal length and ef defines

the percent error. We define the error on the estimated
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(a) (b)

(c) (d)

Fig. 1 (a) A typical image acquired by the Nikon D3100 camera at a focal length of 31mm, with the absolute reference frame
used for camera calibration. (b) A set of M = 3 degenerate conics identified on the same image; two of them are composed
by parallel lines, one of them is composed by orthogonal lines. (c) Zoom of the area c in panel (b). (d) Zoom of the area d in
panel (b). The fitted lines in (c) and (d) are skewed by some pixels with respect to the true lines on the floor.

principal point:

ep = ‖ [(p̃x,1 − px,1), (p̃y,1 − py,1])‖,

where [p̃x,1 p̃y,1] is the estimated principal point and ep
is its distance from the ground true principal point in

pixels. The same Table also reports the average condi-

tion number of ΘTΘ, that measures the sensitivity of

the estimated f1, px,1, py,1 with respect to variations

in m. In practice, a high condition number means that

even little noise on m can dramatically affect the esti-

mate of f1, px,1, py,1, leading to unreliable results.

As expected, increasing the number of conics M the

accuracy and the precision on the estimated focal length

and principal point increase; this occurs when both the

linear system in (12) or the non linear system in (9)

are used to estimate the camera internal parameters.

Even for M = 2, the proposed method furnishes an

estimate of the camera internal parameters that is gen-

erally close to their ground true values, when at least

one of the two conics is composed by a pair of orthog-

onal lines (o ≥ 1). When both the conics are composed

by parallel lines (o = 0), the estimate of the internal

parameters is both imprecise and inaccurate when per-

formed through the linear method in Eq. (13); the con-

ditioning number of ΘTΘ is in this case about 100,000;

this fact agrees with what we have discussed in subsec-

tion 2.2 after equation (10). Notice that, in this case,

also the non linear method is not efficient: since all the

lines have the same orientation, they do not provide

sufficient information for camera calibration.

For M = 3, the estimate provided by both the lin-

ear and non linear method are unreliable for h = 3 or

v = 3 (i.e. all the lines in the considered conics are

parallel). In all the other cases, the focal length is es-

timated within 1.17% of its true value in 95% of the

cases, with a corresponding error on the principal point

smaller than 10.4 pixels; in this situation, the non linear

method achieves a slightly higher accuracy, with 95%

of errors on the estimated focal smaller than 0.65% and

smaller than 10 pixel on the estimated principal point.

It is interesting to notice that for both M = 2 and

M = 3, the median percentage error on the estimated

focal is strongly biased towards negative values (e.g.,

it is -42.8% for M(o, v, h) = 2(0, 2, 0)). The presence

of such bias is strictly related to particular geometric

configurations, as carefully detailed in Section 4.

For increasing values of M , the condition number of

ΘTΘ decreases (its average value is generally smaller

than 1000 for M > 4) and the estimate of the camera

internal parameters becomes consequently more accu-

rate and precise. In practice, for M ≥ 4 the estimate of
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the internal parameters obtained with the linear system

(12) is characterized by an accuracy comparable to that

of the calibration procedure implemented in the Mat-

lab Calibration Toolbox [4], which however requires a

higher number of images. The non linear solution pro-

vides only slightly higher accuracy in these cases.

3.3 Re-calibration using two cameras

Table 3 reports the errors on the estimated focal length

and principal point when two cameras are used. Also

in this case, for M ≥ 4 the estimate provided by the

proposed method is comparable to that obtained with

the Matlab Calibration Toolbox [4], and the non linear

estimate is slightly better than the estimate obtained

with the linear method. In case M = 2, instability is

observed when o = 0, as well as for M = 3 and v = 3

or h = 3. Comparison of Tables 2 and 3 shows that

the condition number of ΘTΘ is generally bigger when

two cameras are used; the estimated focal length and

principal point are consequently slightly less accurate

and precise.

It is finally to be noticed that the uncertainties on

the principal point reported in Table 3 are well below

the typical shift measured for different focal length and

reported in Table 1, thus justifying the usefulness of the

re-calibration procedure.

3.4 Re-calibration using two cameras - simulations

To confirm the results obtained in the real set up and

perform a more detailed numerical analysis of the pro-

posed algorithm, we also resorted to simulation. The

simulated set up resembles an indoor surveillance sys-

tem, with an 8m× 8m area monitored by two cameras

positioned 3m high, at a distance of 8m each other.

Both cameras approximately look at the center of the

surveyed area, and they are equipped with wide-angle

lenses with a focal length of 3200 pixels and sensors of

4000 × 3000 pixels. The cameras observe a set of four

segments each of length 4m on the floor of the mon-

itored area. The segments are arranged into a set of

two conics each composed either by two parallel lines

or by two orthogonal lines. One of the two conics re-

mains fixed, while the other one rotates from 0◦ to 90◦

with a step of 5◦. For each rotation angle, 100 simu-

lations are performed: the segments are projected onto

the camera image planes and a Gaussian random noise

with zero mean and standard deviation of 4.1 pixels is

added to the end point of each segment. This approxi-

mately corresponds to a maximum error of ±0.5cm in

each direction on the floor (and it is coherent with the

maximum error measured on real data and reported at

the beginning of Section 3). The focal length and the

principal point of the first camera are then estimated

using the proposed algorithm and data measured by

both cameras.

Figure 3 shows the median ef and ep values obtained

in this simulation, using the linear and non linear meth-

ods in Eqs. (13) and (9). Data reported here generalize

the results in Table 3 to the case of degenerate conics

with any orientation. Coherently with the data reported

in Table 3, better results are generally obtained when

the conics are composed by orthogonal lines ((o,o) case

in the figure), while conics composed by parallel lines

((p,p) case) provide less accurate results. Fig. 3 also

confirms that the non linear estimate is generally more

accurate than the linear estimate.

More in detail, when the two conics are composed by

four parallel lines ((p,p) case and rotation = 0◦ in Fig.

3) the estimate of the focal length and of the principal

point is strongly biased. This is coherent with the large

errors reported for M(v, h, o) = 2(2, 0, 0) and 2(0, 2, 0)

in Table 3 and in Fig. 2. In the case of the linear es-

timate, both ef and ep decrease (in absolute value) as

the angle between the two conics increases. Nonetheless,

even for a rotation of 90◦, the estimated focal length

is biased by more than 10% and the median error on

the principal point is approximately 5 pixels. Simula-

tion are also coherent with data reported in Table 3

for the 2(1, 1, 0) case, which is characterized by larger

median error and iqr when compared to the 2(0, 0, 2),

2(0, 1, 1), and 2(1, 0, 1) cases. In case of non linear es-

timate, the estimate of the focal length is biased when

all the lines are parallel, but the error is negligible in all

other cases, since all equation in system 9) are used in

this case (whereas one of them is neglected in the lin-

ear solution). The error on the principal point becomes

smaller as the conics are more orthogonal, coherently

with data reported for the 2(1, 1, 0) in Table 3.

When one conic is composed by two parallel lines

and the other one is composed by two orthogonal lines

((o,p) in Fig. 3), the linear estimate becomes unreliable

for a rotation angle close to 40◦. We noticed that in this

particular configuration, the center of the orthogonal

conic lies in the axis of symmetry of the conic com-

posed by two parallel lines. The numerical instability

associated to this configuration and highlighted by this

simulation will be analyzed more in detail in section 4.

In this case, a less accurate estimate is obtained even

after the non linear optimization step (Fig. 3b-c, (o,p)

and rotation 40◦). Notice that such situation was not

represented in the real experiments reported in Table

3, where all the conics have different centers (2(1, 0, 1)

and 2(0, 1, 1) cases in Table 3).
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Table 2 Percentage error on the estimated focal (ef ) and error on the estimated principal point (ep), for different number of
conics, M , for the scenario 1 (re-calibration of a single camera). For each M , v and h indicate the number of conics composed
by a pair of vertical or horizontal lines, whereas o indicate the number of conics composed by a pair of orthogonal lines; (x,x,x)
indicates the set of all the possible combinations. In each cell, the median ± IQR is reported; the value in the brackets indicates
the 95th percentile of the absolute error value. The last column (r cond) indicates the median condition number of ΘT Θ.

M(v, h, o) ef [%] ep [pixels] r cond
lin non lin lin non lin

2(0,0,2) 0.00± 0.55 (1.27) 0.00± 0.46 (0.86) 1.7± 2.8 (12.7) 1.4± 2.2 (9.7) 1e + 003
2(0,1,1) −0.01± 0.53 (2.26) 0.00± 0.32 (0.42) 1.9± 4.4 (23.1) 1.3± 2.1 (10.1) 5e + 003
2(1,0,1) −0.01± 0.63 (1.15) −0.01± 0.50 (0.85) 1.8± 2.5 (9.2) 1.4± 1.7 (6.3) 2e + 003
2(0,2,0) −42.80± 74.40 (99.28) −7.35± 101.41 (107.54) 5635.5± 7877.4 (15477.7) 1582.9± 11801.0 (17755.7) 2e + 009
2(1,1,0) −0.07± 1.47 (8.37) −0.02± 0.39 (0.69) 2.4± 7.3 (89.0) 1.1± 1.4 (4.4) 8e + 004
2(2,0,0) −51.10± 67.93 (104.14) −94.58± 92.97 (103.50) 2365.4± 2629.2 (5742.9) 3083.6± 4533.9 (5802.7) 2e + 007
3(0,0,3) 0.00± 0.61 (0.77) 0.00± 0.52 (0.65) 1.5± 1.8 (5.4) 1.3± 1.6 (4.5) 5e + 002
3(0,1,2) 0.00± 0.52 (0.94) 0.00± 0.43 (0.55) 1.5± 2.3 (8.3) 1.2± 1.7 (5.2) 7e + 002
3(1,0,2) 0.00± 0.60 (0.72) 0.00± 0.56 (0.58) 1.8± 2.2 (6.0) 1.4± 1.4 (3.9) 6e + 002
3(0,2,1) 0.00± 0.39 (0.47) 0.00± 0.34 (0.34) 1.2± 2.2 (10.4) 1.3± 1.9 (10.0) 1e + 003
3(1,1,1) 0.00± 0.54 (0.96) 0.00± 0.47 (0.55) 1.4± 1.7 (5.5) 1.2± 1.2 (3.4) 1e + 003
3(2,0,1) 0.00± 0.52 (0.61) 0.00± 0.49 (0.55) 2.2± 2.9 (9.0) 1.7± 1.9 (5.6) 6e + 002
3(0,3,0) −2.18± 12.73 (15.65) −0.71± 4.90 (4.40) 542.3± 1299.3 (2063.5) 316.6± 239.2 (711.3) 2e + 007
3(1,2,0) 0.00± 0.39 (0.69) 0.00± 0.34 (0.42) 1.5± 2.0 (5.4) 1.2± 1.4 (3.5) 2e + 003
3(2,1,0) 0.00± 0.72 (1.17) −0.01± 0.53 (0.63) 1.8± 2.0 (6.2) 1.2± 1.1 (3.1) 9e + 002
3(3,0,0) −5.39± 23.18 (59.68) −13.12± 18.72 (92.93) 367.0± 586.8 (2621.6) 522.1± 777.9 (3212.9) 3e + 006
4(x,x,x) 0.00± 0.53(0.71) 0.00± 0.48(0.49) 1.6± 2.1(6.0) 1.4± 3.7(4.4) 8e+002
5(x,x,x) 0.00± 0.55(0.61) 0.00± 0.51(0.43) 1.3± 1.4(3.9) 1.1± 1.2(3.4) 4e+002
6(x,x,x) 0.00± 0.56(0.55) 0.00± 0.54(0.47) 1.1± 1.1(3.1) 1.1± 1.0(2.7) 4e+002
7(x,x,x) 0.00± 0.56(0.53) 0.00± 0.56(0.46) 1.1± 0.9(2.6) 1.0± 0.9(2.4) 3e+002

Table 3 Percentage error on the estimated focal (ef ) and error on the estimated principal point (ep), for different number of
conics, M , for the scenario 2 (re-calibration using two cameras). For each M , v and h indicate the number of conics composed
by a pair of vertical or horizontal lines, whereas o indicate the number of conics composed by a pair of orthogonal lines; (x,x,x)
indicates the set of all the possible combinations. In each cell, the median ± IQR is reported; the value in the brackets indicates
the 95th percentile of the absolute error value. The last column (r cond) indicates the median condition number of ΘT Θ.

M(v, h, o) ef [%] ep [pixels] r cond
lin non lin lin non lin

2(0,0,2) −0.04± 1.13 (2.19) −0.06± 0.88 (1.65) 5.8± 7.5 (24.1) 4.6± 6.3 (18.2) 1e + 003
2(0,1,1) 0.18± 1.10 (4.76) 0.05± 0.37 (0.65) 6.6± 8.0 (45.3) 6.0± 6.5 (22.5) 5e + 003
2(1,0,1) −0.06± 1.57 (3.86) −0.04± 0.85 (1.67) 7.0± 8.7 (28.7) 5.4± 5.9 (18.1) 2e + 003
2(0,2,0) −49.90± 74.75 (105.72) −19.77± 98.21 (106.79) 7123.6± 8565.7 (16647.7) 2296.6± 13363.0 (17743.1) 1e + 009
2(1,1,0) −1.37± 7.87 (47.28) −0.06± 0.65 (1.96) 18.7± 33.5 (451.4) 3.8± 4.7 (16.2) 1e + 005
2(2,0,0) −89.50± 30.08 (119.23) −97.12± 5.84 (102.60) 4027.4± 2121.3 (6072.9) 4223.8± 1498.0 (5728.7) 8e + 006
3(0,0,3) −0.05± 0.72 (1.27) −0.06± 0.60 (0.95) 4.8± 5.8 (17.7) 4.0± 4.9 (14.2) 7e + 002
3(0,1,2) 0.05± 0.75 (1.46) 0.01± 0.44 (0.70) 5.8± 6.9 (18.0) 5.0± 5.9 (15.1) 1e + 003
3(1,0,2) 0.05± 0.83 (1.49) −0.02± 0.60 (0.91) 5.9± 5.7 (16.5) 4.5± 4.3 (11.6) 1e + 003
3(0,2,1) 0.08± 0.30 (0.63) 0.05± 0.22 (0.32) 7.0± 7.5 (23.5) 6.8± 6.4 (23.3) 1e + 003
3(1,1,1) −0.06± 0.99 (2.03) −0.07± 0.56 (0.86) 4.5± 5.8 (14.9) 3.5± 4.3 (11.0) 1e + 003
3(2,0,1) −0.02± 0.82 (2.75) 0.01± 0.59 (0.79) 6.6± 7.6 (19.3) 5.0± 5.4 (15.7) 1e + 003
3(0,3,0) −2.42± 3.43 (18.09) −3.56± 2.29 (6.67) 519.3± 261.7 (2572.9) 524.8± 292.9 (1067.4) 2e + 007
3(1,2,0) 0.01± 0.47 (1.90) 0.03± 0.31 (0.56) 4.7± 5.1 (15.9) 3.9± 4.0 (11.6) 2e + 003
3(2,1,0) −0.12± 1.03 (3.02) −0.09± 0.58 (0.95) 4.7± 5.6 (20.9) 3.1± 3.2 (8.5) 1e + 003
3(3,0,0) −40.41± 63.25 (106.98) −59.36± 52.50 (101.68) 1564.5± 2229.6 (5069.4) 2579.3± 1733.2 (5241.5) 2e + 006
4(x,x,x) 0.00± 0.65(1.38) 0.03± 0.39(0.61) 4.9± 6.0(17.3) 4.2± 4.6(13.2) 9e+002
5(x,x,x) 0.02± 0.52(0.88) 0.01± 0.37(0.50) 4.6± 4.8(11.7) 3.8± 3.9(9.8) 7e+002
6(x,x,x) 0.05± 0.47(0.68) 0.02± 0.35(0.47) 4.1± 4.1(10.8) 3.8± 3.4(9.2) 6e+002
7(x,x,x) 0.03± 0.45(0.61) 0.05± 0.35(0.46) 4.0± 3.7(9.5) 3.7± 3.1(7.9) 6e+002
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Percentage error on the focal (a, c, e) and error on the principal point (b, d, f) as a function of the condition number
of ΘT Θ, for M = {2, 3, 7} and different sets (v, h, o); the internal parameters are estimated using two cameras and the linear
method.

When the two conics are made of orthogonal lines

pairs, both the linear and non linear estimate provide

reliable results for the focal length and the principal

point, coherently with the 2(0, 0, 2) case in Table 3. Sim-

ulations performed with M = 3 or M = 4 conics, not

reported here for sake of space, were also in agreement

with the results reported in Table 3.

4 Discussion

In many computer vision applications, including zoom

lens calibration [11,16,17,21,24], surveillance [30] or

traffic inspection [31], a set of cameras observes a man

made environments and requires frequent recalibration.

Under the hypothesis of fixed camera position and ori-

entation, the method presented here uses a set of de-

generate conics (i.e. pairs of lines) to reliably estimate

the camera internal parameters after zooming. Recal-

ibration is therefore drastically simplified, as straight

lines are commonly present in the scenes [13,26] and

they can be automatically identified and accurately fit-

ted with standard computer vision methods [13].

The key assumption of the method is that the cam-

era external parameters, t1 and R1, are known. Indeed,

the camera orientation R1 does not change when the

camera zooms, but the position of the optical center

moves forward and backward when the barrel of the lens

rotates during zooming. Similarly to [17], we have used

here the exif data to estimate the shift δ with a typical

approximation (bounded by the exif data discretization

step) which is in the order of ±1mm [26]. Exif data

are generally available for any picture acquired by dig-

ital cameras and/or mobile phone; for cameras in an

industrial or robotic context, these data can generally

be retrieved from the API provided with the camera

SDK or general purpose software for camera controlling
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(a) (b)

(c) (d)

Fig. 3 Panels (a)-(d) show the median ef and ep errors for the simulation setup described in the text, in the case of M = 2
conics composed each by two parallel lines (p,p), or by two orthogonal lines and two parallel lines (o,p), or by two orthogonal
lines (o,o). Panels (a) and (c) are referred to the linear estimate obtained through Eq. (13), while panels (b) and (d) are
referred to the non linear estimate.

[18]. The experimental results reported in Tables 2 and

3 demonstrate that such approximation is not critical,

as the achieved precision and accuracy are comparable

to those obtained with standard calibration procedures

that however employ a larger number of calibration im-

ages, like the Zhang’s method [3,4], that does estimate

also the external parameters (R1, t1) of the camera, as

well as the distortion parameters of the lens.

An alternative solution could be to reformulate the

problem including the shift along the optical axes within

the unknowns. However this would introduce some non-

linear terms in Eq. (7), where the term δ2 is present and

it multiplies the other unknowns p̃x,1, p̃x,2 and f̃1. As a

consequence, the linear derivation reported in Eqs. (10

- 13) would not be possible in this case.

Some geometrical and numerical constraints limit

the application of the present method. First of all, it

has to be noticed that the non linear system in Eq. (9)

is made of 6 equations (corresponding to the six coef-

ficients of the observed j-th conic, projected onto the

Z = f2U plane) and four unknowns (p̃x,1, p̃y,1, f̃1 and

ρj , considering a unique conic Cj). For any number of

conics, however, some solutions with f̃1 = ρj = 0 would

be optimal in a least squares sense, although meaning-

less by a practical point of view. A reliable initial guess,

reasonably far from the above solutions, is therefore

necessary when an iterative algorithm is used to solve

this non linear system, otherwise the iterative proce-

dure could converge towards meaningless solutions. The

linear system in Eq. (12), obtained neglecting the sixth
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equation in (9) and with a proper combination of the

remaining equations, serves to this scope. The estimate

provided by the non linear system is generally slightly

more accurate than the one obtained with the linear

method (see Tables 2 and 3), although for some geo-

metrical configurations the improvement is much more

significant (Fig. 3).

Now we want to give a geometric description of sys-

tem (9) and we prove that, in any case, it is necessary

to use at least two conics to solve it and that the conics

cannot have a common symmetry center. To show this,

let us consider an ideal situation with no noise and let

us rewrite the last 3 constraints in Eq. (9) in a differ-

ent way. To this aim, let us first consider the first three

equations in the system (9) and define:

s = c11/b11 = c12/b12 = c22/b22 (15)

from which we obtain ρj/f̃1 = sf̃1 and ρj = sf̃21 . Di-

viding by f̃1 the fourth and fifth equations of (9) and

substituting in the last three equations ρj/f̃1 and ρj ,

we get the following system:
1
2H(p̃x,1, p̃y,1)u = c11p̃x,1 + c12p̃y,1 + c13 = sf̃1b13
1
2H(p̃x,1, p̃y,1)v = c12p̃x,1 + c22p̃y,1 + c23 = sf̃1b23
H(p̃x,1, p̃y,1) = c11p̃

2
x,1 + c22p̃

2
y,1 + 2c12p̃x,1p̃y,1+

+2c13p̃x,1 + 2c23p̃y,1 + c33 = sf̃21 b33

(16)

where H(u, v) is the polynomial associated to the ma-

trix C1,j (see Eq. (4)) and Hu, Hv indicate the partial

derivatives of the function H with respect to u and v,

respetively. Let us consider now the conic γ of equation

H(u, v) = [u v 1]Ci,j [u v 1]T = 0, that is the projection

of the j-th conic onto the i-th image plane. Recall that

the equations H(u, v)u = H(u, v)v = 0 give the centers

of symmetry of γ. If γ is a parabola or a pair of par-

allel lines we cannot obtain a solution from the above

equations, since the system:

H(p̃x,1, p̃y,1)u = 2sf1b13, H(p̃x,1, p̃y,1)v = 2sf1b23

has either no (parabola), or infinitely many solutions

(pair of parallel lines). Hence let us assume that γ has

a unique center of symmetry (x∗, y∗), i.e. that γ is an

ellipse, an hyperbole or a pair of intersecting lines. If γ

is an ellipse or an hyperbole, the center (x∗, y∗) does

not belong to γ, whilst if γ is a pair of intersecting lines

(x∗, y∗) is the intersection point.

The equations (16) give a clear geometric interpre-

tation of the problem: the first two equations define a

line λ in the space (u, v, z). This line passes through

the point (x∗, y∗, 0) which is the symmetry center of

the quadric Q of equation H(u, v) − sb33z2 = 0, cor-

responding to the third equation in the system (16),

because the point (x∗, y∗) is the center of γ. In fact the

system H(u, v)u = H(u, v)v = 0 has the point (x∗, y∗)
as solution.

The required point (p̃x,1, p̃y,1, f̃1) is one of the points

of intersection of λ with Q. We have then to distinguish

two cases:

– 1) if γ is not degenerate, intersecting λ with Q we

get two points (p̃x,1, p̃y,1, f̃1) and (ũ, ṽ,−f̃1) with

opposite third coordinates; the correct solution in

this case can be derived and it is obviously the one

having the third coordinate > 0;

– 2) if γ is a pair of intersecting lines, Q is a cone with

vertex (x∗, y∗, 0); in this case there is no possibility

to get the point (p̃x,1, p̃y,1, f̃1) from the above equa-

tion, since either the line λ is contained in Q or λ

and Q intersect only at (x∗, y∗, 0).

The above geometric interpretation shows that, us-

ing a unique conic, we can get a solution only in case

1) and computing it requires to solve a non linear equa-

tion. Hence, in general, more than one conic is needed

even in absence of noise.

If we solve the problem using only linear equations,

the above description proves that we need to use at

least two conics γ1 and γ2. In fact, neglecting the last

equation of (16), for each γi we get a line λi and these

lines intersect at the point (p̃x,1, p̃y,1, f̃1), and, in gen-

eral, only at this point, so that we need at least two

conics to determine the point. The two conics cannot

have the same symmetry center (x∗, y∗), otherwise the

two lines λ1 and λ2 would pass through (x∗, y∗, 0) and

(p̃x,1, p̃y,1, f̃1), hence they would coincide. Results re-

ported in Fig. 3, for the (o,p) case and a rotation angle

of 40◦, clearly confirm this theoretical result. In this

sense, the present approach differs significantly from

the ones in literature that generally require set of con-

focal or co-axial conics [5–7].

At least two conics are needed also if we start with

equations (9) and we proceed as is subsection 2.1. As

we have seen in subsection 2.1 by using one conic we

can eliminate ρj from the first equations in three dif-

ferent ways getting three lines, in principle intersect-

ing at (p̃x,1, p̃y,1, f̃1). However, in absence of noise, the

three lines would be coincident, making the calculation

of (p̃x,1, p̃y,1, f̃1) unrealible. On the contrary, if we use

two or more conics we get two or more lines in any

case (existence or absence of noise) and the calculation

of (p̃x,1, p̃y,1, f̃1) is consequently more reliable, always

keeping in mind that the conics must have different

symmetry centers, as we have seen above.

The geometric analysis shows that the shape and the

mutual position of the conics is indeed very important

for the accuracy of calculation: choosing conics with

a center of symmetry (ellipses, hyperbolas or pairs of

intersecting lines) is important to avoid that the center

are too much close each other.
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Finally, it is to be noticed that the method can be

used without modifications for any kind of conic that

can lie on a set of different (but known) planes. This can

help to avoid the occurrence of the numerical and ge-

ometrical instabilities previously identified. Neverthe-

less, a detailed analysis of these situations goes beyond

the scope of the paper and it is reserved for future anal-

ysis.

5 Conclusion

We have described here a method based on conics, in

particular degenerate conics, to estimate the internal

parameters of a camera with known position and ori-

entation. No knowledge of the conics is required, but

for the plane where they lie. If at least four conics are

used, the accuracy of the method is comparable to that

of more traditional approaches, that however require a

very large number of images to estimate the camera

parameters. The proposed method can find application

each time a fixed orientation camera operates in a man-

made environment, where lots of conic features are eas-

ily extracted from the scene using standard computer

vision algorithms.
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