Skip to main content
Log in

Human motion control with physically plausible foot contact models

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The foot-to-ground contact model plays an important role in the simulation of highly dynamic motions, such as turns and kicks. In this paper, we propose a method for solving dynamically cumbersome slipping contact problems, which are frequently observed in highly dynamic motions. We employ and modify a combination of two different types of cones representing the inequality constraints of a contact model: the friction cone and the velocity cone. The friction cone makes character animation physically plausible while the velocity cone allows a character to perform a sharp turn without foot-to-ground penetration. Our system effectively simulates human behavior using an inverted pendulum on a cart (IPC) model and motion capture data. In the pre-processing step, we analyze motion capture data to extract meaningful information for the IPC model. At run-time, our system produces a physically simulated character by tracking the desired motion that is predicted by the IPC model. We formulate human motion control as a quadratic programming satisfying the proposed foot-to-ground contact constraints. Our examples show that the proposed system can produce physically plausible character animation without noticeable foot-to-ground contact artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abe, Y., da Silva, M., Popović, J.: Multiobjective control with frictional contacts. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp. 249–258, Eurographics Association (2007)

  2. Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. ACM SIGGRAPH Comput. Graph. 23(3), 223–232 (1989)

    Article  Google Scholar 

  3. Baraff, D.: Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica 10(2–4), 292–352 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: Proceedings of the 21st annual conference on computer graphics and interactive techniques, pp. 23–34, ACM (1994)

  5. Baraff, D.: Interactive simulation of solid rigid bodies. IEEE Comput. Graph. Appl. 15(3), 63–75 (1995)

    Article  Google Scholar 

  6. Baraff, D.: Linear-time dynamics using lagrange multipliers. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp. 137–146. ACM (1996)

  7. Bullet: Bullet Physics Library (2013). http://bulletphysics.org/

  8. Da Silva, M., Abe, Y., Popović, J.: Simulation of human motion data using short-horizon model-predictive control. In: Computer Graphics Forum, vol. 27, pp. 371–380. Wiley Online Library (2008)

  9. Dorato, P., Cerone, V., Abdallah, C.: Linear-quadratic control: an introduction. Simon & Schuster, New York (1994)

    Google Scholar 

  10. Faloutsos, P., Van de Panne, M., Terzopoulos, D.: Composable controllers for physics-based character animation. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, pp. 251–260. ACM (2001)

  11. Geijtenbeek, T., Pronost, N., Egges, A., Overmars, M.H.: Interactive character animation using simulated physics. Eurographics-state of the art reports 2 (2011)

  12. Glardon, P., Boulic, R., Thalmann, D.: Robust on-line adaptive footplant detection and enforcement for locomotion. Vis. Comput. 22(3), 194–209 (2006)

    Article  Google Scholar 

  13. Hodgins, J.K., Pollard, N.S.: Adapting simulated behaviors for new characters. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 153–162.,Addison-Wesley Publishing Co, ACM Press (1997)

  14. Hwang, J., Suh, I., Kwon, T.: Editing and synthesizing two-character motions using a coupled inverted pendulum model. In: Computer Graphics Forum, vol. 33, pp. 21–30. Wiley Online Library (2014)

  15. Kajita, S., Nagasaki, T., Kaneko, K., Yokoi, K., Tanie, K.: A hop towards running humanoid biped. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE international conference on, vol. 1, pp. 629–635, IEEE (2004)

  16. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: ACM transactions on graphics (TOG), vol. 21, pp. 473–482. ACM (2002)

  17. Kovar, L., Gleicher, M., Schreiner, J.: Footskate cleanup for motion capture. In: ACM Siggraph Symposium on Computer Animation (2002)

  18. Kwon, T., Hodgins, J.: Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 129–138. Eurographics Association (2010)

  19. de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. (TOG) 29(4), 131 (2010)

    Google Scholar 

  20. Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques (1999)

  21. Lee, Y., Kim, S., Lee, J.: Data-driven biped control. ACM Trans. Graph. (TOG) 29(4), 129 (2010)

    Google Scholar 

  22. Lee, Y., Park, M.S., Kwon, T., Lee, J.: Locomotion control for many-muscle humanoids. ACM Trans. Graph. (TOG) 33(6), 218 (2014)

    Article  Google Scholar 

  23. Macchietto, A., Zordan, V., Shelton, C.R.: Momentum control for balance. ACM Trans. Graph. (TOG) 28, 80 (2009)

    Article  Google Scholar 

  24. Mirtich, B., Canny, J.: Impulse-Based Dynamic Simulation. Computer Science Division (EECS), University of California, California (1994)

    Google Scholar 

  25. Mirtich, B., Canny, J.: Impulse-based simulation of rigid bodies. In: Proceedings of the 1995 symposium on Interactive 3D graphics, pp. 181-ff ACM (1995)

  26. Mordatch, I., De Lasa, M., Hertzmann, A.: Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. (TOG) 29(4), 71 (2010)

    Article  Google Scholar 

  27. Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28(3), 81:1–81:9 (2009)

    Article  Google Scholar 

  28. ODE: Open Dynamic Engine (2004). http://www.ode.org/

  29. Pražák, M., Hoyet, L., O’Sullivan, C.: Perceptual evaluation of footskate cleanup. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 287–294. ACM (2011)

  30. da Silva, M., Abe, Y., Popović, J.: Interactive simulation of stylized human locomotion. ACM Trans. Graph. (TOG) 27, 82 (2008)

    Article  Google Scholar 

  31. Sok, K.W., Kim, M., Lee, J.: Simulating biped behaviors from human motion data. ACM Trans. Graph. (TOG). 26, 107 (2007)

    Article  Google Scholar 

  32. Sugihara, T.: Simulated regulator to synthesize zmp manipulation and foot location for autonomous control of biped robots. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 1264–1269. IEEE (2008)

  33. Wu, Jc, Popović, Z.: Terrain-adaptive bipedal locomotion control. ACM Trans. Graph. (TOG) 29(4), 72 (2010)

    Article  Google Scholar 

  34. Yin, K., Loken, K., Van de Panne, M.: Simbicon: simple biped locomotion control. ACM Trans. Graph. (TOG) 26, 105 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We thank to the anonymous reviewers for their helpful comments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (NRF-2014R1A1A1038386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taesoo Kwon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 45609 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Park, H., Lee, J. et al. Human motion control with physically plausible foot contact models. Vis Comput 31, 883–891 (2015). https://doi.org/10.1007/s00371-015-1097-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1097-8

Keywords

Navigation