Skip to main content
Log in

Efficient EMD and Hilbert spectra computation for 3D geometry processing and analysis via space-filling curve

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Empirical Mode Decomposition (EMD) has proved to be an effective and powerful analytical tool for non-stationary time series and starts to exhibit its modeling potential for 3D geometry analysis. Yet, existing EMD-based geometry processing algorithms only concentrate on multi-scale data decomposition by way of computing intrinsic mode functions. More in-depth analytical properties, such as Hilbert spectra, are hard to study for 3D surface signals due to the lack of theoretical and algorithmic tools. This has hindered much more broader penetration of EMD-centric algorithms into various new applications on 3D surface. To tackle this challenge, in this paper we propose a novel and efficient EMD and Hilbert spectra computational scheme for 3D geometry processing and analysis. At the core of our scheme is the strategy of dimensionality reduction via space-filling curve. This strategy transforms the problem of 3D geometry analysis to 1D time series processing, leading to two major advantages. First, the envelope computation is carried out for 1D signal by cubic spline interpolation, which is much faster than existing envelope computation directly over 3D surface. Second, it enables us to calculate Hilbert spectra directly on 3D surface. We could take advantages of Hilbert spectra that contain a wealth of unexploited properties and utilize them as a viable indicator to guide our EMD-based 3D surface processing. Furthermore, to preserve sharp features, we develop a divide-and-conquer scheme of EMD by explicitly separating the feature signals from non-feature signals. Extensive experiments have been carried out to demonstrate that our new EMD and Hilbert spectra based method is both fast and powerful for 3D surface processing and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The process of EMD and Hilbert spectra analysis is called Hilbert-Huang transform (HHT) in the literature.

References

  1. Akleman, E., Xing, Q., Garigipati, P., Taubin, G., Chen, J., Hu, S.: Hamiltonian cycle art: surface covering wire sculptures and duotone surfaces. Comput. Graph. 37(5), 316–332 (2013)

    Article  Google Scholar 

  2. Ali, H., Hariharan, M., Yaacob, S., Adom, A.H.: Facial emotion recognition using empirical mode decomposition. Expert Syst. Appl. 42(3), 1261–1277 (2015)

    Article  Google Scholar 

  3. Arkin, E., Held, M., Mitchell, J., Skiena, S.: Hamiltonian triangulations for fast rendering. Vis. Comput. 12(9), 429–444 (1996)

    Article  Google Scholar 

  4. Belyaev, A., Ohtake, Y.: A comparison of mesh smoothing methods. In: Israel-Korea bi-national conference on geometric modeling and computer graphics, pp. 83–87 (2003)

  5. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal 21(1), 53–94 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Di, C., Yang, X., Wang, X.: A four-stage hybrid model for hydrological time series forecasting. PLoS ONE 9(8), e104–663 (2014)

    Article  Google Scholar 

  7. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)

    Article  Google Scholar 

  8. Gao, Y., Li, C.F., Ren, B., Hu, S.M.: View-dependent multiscale fluid simulation. IEEE Trans. Vis. Comput. Graph. 19(2), 178–188 (2013)

    Article  Google Scholar 

  9. Gurung, T., Luffel, M., Lindstrom, P., Rossignac, J.: Lr: compact connectivity representation for triangle meshes. ACM Trans. Graph. 30(4), 67:1–67:8 (2011)

    Article  Google Scholar 

  10. Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: SIGGRAPH’99, pp. 325–334 (1999)

  11. Hou, T., Qin, H.: Admissible diffusion wavelets and their applications in space-frequency processing. IEEE Trans. Vis. Comput. Graph. 19(1), 3–15 (2013)

    Article  Google Scholar 

  12. Hu, J., Wang, X., Qin, H.: Improved, feature-centric emd for 3d surface modeling and processing. Graph. Models 76(5), 340–354 (2014)

    Article  Google Scholar 

  13. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454(1971), 903–995 (1998)

  14. Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)

    Article  Google Scholar 

  15. Kopsinis, Y., McLaughlin, S.: Development of emd-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process. 57(4), 1351–1362 (2009)

    Article  MathSciNet  Google Scholar 

  16. Mandic, D., Rehman, N., Wu, Z., Huang, N.: Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis. IEEE Signal Process. Mag. 30(6), 74–86 (2013)

    Article  Google Scholar 

  17. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Mat. Ann. 36(1), 157–160 (1890)

    Article  MATH  MathSciNet  Google Scholar 

  18. Qin, X., Hong, C.X., Zhang, S.Q., Wang, W.H.: Emd based fairing algorithm for mesh surface. In: CAD/Graphics ’09., pp. 606–609 (2009)

  19. Quinn, J., Langbein, F., Lai, Y.K., Martin, R.: Generalized anisotropic stratified surface sampling. IEEE Trans. Vis. Comput. Graph. 19(7), 1143–1157 (2013)

    Article  Google Scholar 

  20. Ren, B., Li, C.F., Lin, M., Kim, T., Hu, S.M.: Flow field modulation. IEEE Trans. Vis. Comput. Graph. 19(10), 1708–1719 (2013)

    Article  Google Scholar 

  21. Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. In: SIGGRAPH ’95, pp. 161–172 (1995)

  22. Solomon, J., Crane, K., Butscher, A., Wojtan, C.: A general framework for bilateral and mean shift filtering. CoRR abs/1405.4734 (2014)

  23. Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. 28(5), 147:1–147:9 (2009)

    Article  Google Scholar 

  24. Taubin, G.: A signal processing approach to fair surface design. In: SIGGRAPH, pp. 351–358 (1995)

  25. Taubin, G.: Constructing hamiltonian triangle strips on quadrilateral meshes. In: Visualization and Mathematics III, Mathematics and Visualization, pp. 69–91 (2003)

  26. Wang, H., Su, Z., Cao, J., Wang, Y., Zhang, H.: Empirical mode decomposition on surfaces. Graph. Models 74(4), 173–183 (2012)

    Article  Google Scholar 

  27. Wang, R., Yang, Z., Liu, L., Deng, J., Chen, F.: Decoupling noises and features via weighted l1-analysis compressed sensing. ACM Trans. Graph. 33(2), 18:1–18:12 (2014)

    Article  Google Scholar 

  28. Wang, S., Hou, T., Su, Z., Qin, H.: Multi-scale anisotropic heat diffusion based on normal-driven shape representation. Vis. Comput. 27(6–8), 429–439 (2011)

    Article  Google Scholar 

  29. Wang, X., Cao, J., Liu, X., Li, B., Shi, X., Sun, Y.: Feature detection of triangular meshes via neighbor supporting. J. Zhejiang Univ. Sci. C 13(6), 440–451 (2012)

    Article  Google Scholar 

  30. Wang, X., Liu, X., Lu, L., Li, B., Cao, J., Yin, B., Shi, X.: Automatic hole-filling of cad models with feature-preserving. Comput. Graph. 36(2), 101–110 (2012)

    Article  Google Scholar 

  31. Wu, Z., Huang, N.E., Chen, X.: The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal. 01(03), 339–372 (2009)

    Article  MathSciNet  Google Scholar 

  32. Yoshizawa, S., Belyaev, A., peter Seidel, H.: Smoothing by example: mesh denoising by averaging with similarity based weights. In: Proceedings of the IEEE international conference on shape modeling and applications (2006), pp. 38–44. IEEE (2006)

  33. Zang, Y., Huang, H., Zhang, L.: Efficient structure-aware image smoothing by local extrema on space-filling curve. IEEE Trans. Vis. Comput. Graph. 20(9), 1253–1265 (2014)

    Article  Google Scholar 

  34. Zhang, J., Zheng, C., Hu, X.: Triangle mesh compression along the hamiltonian cycle. Vis. Comput. 29(6–8), 717–727 (2013)

    Article  Google Scholar 

  35. Zhao, W., Gao, S., Lin, H.: A robust hole-filling algorithm for triangular mesh. Vis. Comput. 23(12), 987–997 (2007)

    Article  Google Scholar 

  36. Zhong, M., Qin, H.: Sparse approximation of 3d shapes via spectral graph wavelets. Vis. Comput. 30(6–8), 751–761 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Topraj Gurung and Dr. Mark Luffel for discussing and providing the code of Hamilton cycle generation. This work is supported in part by National Science Foundation of USA (IIS-0949467, IIS-1047715, and IIS-1049448), National Natural Science Foundation of China (No. 61190120, 61190121, 61190125, 61202261), China Postdoctoral Science Foundation (No. 2014M560875), Scientific and Technological Development Plan of Jilin Province (No. 20130522113JH). Models are courtesy of AIM@SHAPE Repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, J., Zhang, D. et al. Efficient EMD and Hilbert spectra computation for 3D geometry processing and analysis via space-filling curve. Vis Comput 31, 1135–1145 (2015). https://doi.org/10.1007/s00371-015-1100-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1100-4

Keywords

Navigation