Skip to main content
Log in

eSphere: extracting spheres from unorganized point clouds

How to extract multiple spheres accurately and simultaneously

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Spheres are popular geometric primitives found in many manufactured objects. However, sphere fitting and extraction have not been investigated in depth. In this paper, a robust method is proposed to extract multiple spheres accurately and simultaneously from unorganized point clouds. Moreover, a novel validation step is presented to assess the quality of the detected spheres, which help remove the confusion between perfect spheres and sphere-like shapes such as ellipsoids and paraboloids. A novel sampling strategy is introduced to reduce computational burden for sphere extraction. Experiments on both synthetic and scanned point clouds with different levels of noise and outliers are conducted and the results compared to state-of-the-art methods. These experiments demonstrate the efficiency and robustness of the proposed sphere extraction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Dias, P., Silva, J., Castro, R., Neves, A. J.R.: Detection of aerial balls using a kinect sensor. In: The 18th Annual RoboCup International Symposium (2014)

  2. Varady, T., Martin, R.R., Cox, J.: Reverse engineering of geometric models an introduction. Comput. Aided Des. 29(4), 255–268 (1997)

    Article  Google Scholar 

  3. Benkő, P., Várady, T.: Segmentation methods for smooth point regions of conventional engineering objects. Comput. Aided Des. 36(6), 511–523 (2004)

    Article  Google Scholar 

  4. van der Glas, M., Vos, F. M., Botha, C.P., Vossepoel, A.M.: Determination of position and radius of ball joints, vol. 4684, pp. 1571–1577. International Society for Optics and Photonics (2002)

  5. Agrawal, M., Davis, L.S.: Camera calibration using spheres: a semi-definite programming approach. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 782–789. IEEE (2003)

  6. Wong, K.-Y., Zhang, G., Chen, Z.: A stratified approach for camera calibration using spheres. IEEE Trans. Image Process. 20, 305–316 (2011)

    Article  MathSciNet  Google Scholar 

  7. Wang, Y., Shi, H., Zhang, Y., Zhang, D.: Automatic registration of laser point cloud using precisely located sphere targets. J. Appl. Remote Sens. 8(1), 083588 (2014)

    Article  MathSciNet  Google Scholar 

  8. Ruan, M., Huber, D.: Extrinsic calibration of 3d sensors using a spherical target. In: Proceedings of the International Conference on 3D Vision (2014)

  9. Staranowicz, A.N., Brown, G.R., Morbidi, F., Mariottini, G.-L.: Practical and accurate calibration of rgb-d cameras using spheres. Comput. Vis. Image Underst. 137, 102–114 (2015).http://dx.doi.org/10.1016/j.cviu.2015.03.013

  10. Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using rgb-d cameras. In: RoboCup 2011: Robot Soccer World Cup XV, pp. 306–317. Springer, Berlin (2012)

  11. Deschaud, J.-E., Goulette, F.: A fast and accurate plane detection algorithm for large noisy point clouds using filtered normals and voxel growing. In: 3DPVT (2010)

  12. Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A.: The 3d hough transform for plane detection in point clouds: a review and a new accumulator design. 3D Res. 2(2), 1–13 (2011)

    Article  Google Scholar 

  13. Liu, Y.-J., Zhang, J.-B., Hou, J.-C., Ren, J.-C., Tang, W.-Q.: Cylinder detection in large-scale point cloud of pipeline plant. IEEE Trans. Vis. Comput. Gr. 19(10), 1700–1707 (2013)

    Article  Google Scholar 

  14. Tran, T.-T., Cao, V.-T., Laurendeau, D.: Extraction of cylinders and estimation of their parameters from point clouds. Comput. Gr. 46, 345–357 (2015)

    Article  Google Scholar 

  15. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  16. Schnabel, R., Wahl, R., Klein, R.: Efficient ransac for point-cloud shape detection. Comput. Gr. Forum 26(2), 214–226 (2007)

    Article  Google Scholar 

  17. Camurri, M., Vezzani, R., Cucchiara, R.: 3d hough transform for sphere recognition on point clouds. Mach. Vis. Appl. 25(7), 1877–1891 (2014)

    Article  Google Scholar 

  18. Abuzaina, A., Nixon, M. S., Carter, J. N.: Sphere detection in kinect point clouds via the 3d hough transform. In: Computer Analysis of Images and Patterns, pp. 290–297. Springer, Berlin (2013)

  19. Attene, M., Patanè, G.: Hierarchical structure recovery of point-sampled surfaces. Comput. Gr. Forum 29(6), 1905–1920 (2010)

    Article  Google Scholar 

  20. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  21. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972)

    Article  MATH  Google Scholar 

  22. Pratt, V.: Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH Comput. Gr. 21(4), 145–152 (1987)

    Article  MathSciNet  Google Scholar 

  23. Forbes, A.B.: Least-squares Best-fit Geometric Elements, Division of Information Technology and Computing, DITC, vol. 140, pp. 30. National Physical Laboratory (1989)

  24. Gander, W., Golub, G., Strebel, R.: Least-squares fitting of circles and ellipses. BIT Numer. Math. 34(4), 558–578 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lukács, G., Martin, R., Marshall, D.: Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation. In: Proceeding of the 5th European Conference on Computer Vision, pp. 671–686. Springer, Freiburg (1998)

  26. Franaszek, M., Cheok, G., Saidi, K., Witzgall, C.: Fitting spheres to range data from 3-d imaging systems. IEEE Trans. Instrum. Meas. 58, 3544–3553 (2009)

  27. Levin, D.: The approximation power of moving least-squares. Math. Comput. 67, 1517–1531 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oztireli, A.C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces based on non-linear kernel regression. Comput. Gr. Forum 28(2), 493–501 (2009)

    Article  Google Scholar 

  29. Bolles, R.C., Fischler, M.A.: A ransac-based approach to model fitting and its application to finding cylinders in range data. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence—Volume 2, IJCAI’81, (San Francisco, CA, USA), pp. 637–643. Morgan Kaufmann Publishers Inc. (1981)

  30. Cao, M., Ye, C., Doessel, O., Liu, C.: Spherical parameter detection based on hierarchical hough transform. Pattern Recognit. Lett. 27(9), 980–986 (2006)

    Article  Google Scholar 

  31. Ogundana, O.O., Coggrave, C.R., Burguete, R.L., Huntley, J.M.: Fast hough transform for automated detection of spheres in three-dimensional point clouds. Opt. Eng. 46(5), 051002–051002 (2007)

    Article  Google Scholar 

  32. Lamiroy, B., Gaucher, O., Fritz, L., et al.: Robust circle detection. In: Proceeding of the 9th International Conference on Document Analysis and Recognition, ICDAR’07, vol. 1, pp. 526–530 (2007)

  33. Bénière, R., Subsol, G., Gesquière, G., Le Breton, F., Puech, W.: A comprehensive process of reverse engineering from 3d meshes to cad models. Comput. Aided Des. 45(11), 1382–1393 (2013)

    Article  Google Scholar 

  34. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, (New York, USA), pp. 71–78. (1992)

  35. DeVore, J.L.: Probability and Statistics for Engineering and the Sciences. Brooks/Cole, Cengage Learning (2008)

  36. Cao, V., Nguyen, V., Tran, T., Ali, S., Laurendeau, D.: Non-rigid registration for deformable objects. In: Proceedings of the 9th International Conference on Computer Graphics Theory and Applications, Lisbon, Portugal, 2014, pp. 43–52 (2014)

  37. Magid, E., Soldea, O., Rivlin, E.: A comparison of gaussian and mean curvature estimation methods on triangular meshes of range image data. Comput. Vis. Image Underst. 107(3), 139–159 (2007)

    Article  Google Scholar 

  38. Comaniciu, D., Meer, P.: Mean Shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  39. Zhang, J., Cao, J., Liu, X., Wang, J., Liu, J., Shi, X.: Point cloud normal estimation via low-rank subspace clustering. Comput. Gr. 37(6), 697–706 (2013)

    Article  Google Scholar 

  40. Boulch, A., Marlet, R.: Fast and robust normal estimation for point clouds with sharp features. In: Computer Graphics Forum, vol. 31, pp. 1765–1774. Wiley (2012)

  41. Kalogerakis, E., Nowrouzezahrai, D., Simari, P., Singh, K.: Extracting lines of curvature from noisy point clouds. Comput. Aided Des. 41(4), 282–292 (2009)

  42. Yang, P., Qian, X.: Direct computing of surface curvatures for point-set surfaces. In: SPBG’07, pp. 29–36 (2007)

  43. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 1, pp. 438–445. IEEE (2001)

Download references

Acknowledgments

This research project was supported by the NSERC/Creaform Industrial Research Chair on 3-D Scanning. The authors express their gratitude to Kean Walmsley at Autodesk for providing the Sphere Packing model, to 3D Warehouse for making the Carbon Nano Tube and ADN models available (Fig. 19) and to GrabCAD for the bracelet model (Fig. 16). We are grateful to our colleagues, Jean-Francois Lalonde and to the anonymous reviewers for fruitful suggestions and to Annette Schwerdteger for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung-Thien Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, TT., Cao, VT. & Laurendeau, D. eSphere: extracting spheres from unorganized point clouds. Vis Comput 32, 1205–1222 (2016). https://doi.org/10.1007/s00371-015-1157-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1157-0

Keywords

Navigation