Skip to main content
Log in

A radiance cache method for highly glossy surfaces

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Radiance caching methods have proven to be efficient for global illumination. Their goal is to compute precisely illumination values (incident radiance or irradiance) at a reasonable number of points lying on the scene surfaces. These points, called records, are stored in a cache used for estimating illumination at other points in the scene. Unfortunately, with records lying on glossy surfaces, the irradiance value alone is not sufficient to evaluate the reflected radiance; each record should also store the incident radiance for all incident directions. Memory storage can be reduced with projection techniques using spherical harmonics or other basis functions. These techniques provide good results for low shininess BRDFs. However, they get impractical for shininess of even moderate value, since the number of projection coefficients increases drastically. In this paper, we propose a new radiance caching method that handles highly glossy surfaces while requiring a low memory storage. Each cache record stores a coarse representation of the incident illumination thanks to a new data structure, called Equivalent Area light Sources, capable of handling fuzzy mirror surfaces. In addition, our method proposes a new simplification of the interpolation process, since it avoids the need for expressing and evaluating complex gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Brady, A., Lawrence, J., Peers, P., Weimer, W.: genbrdf: discovering new analytic brdfs with genetic programming. ACM Trans. Graph 33(4), 114:1–114:11 (2014)

    Article  Google Scholar 

  2. Gassenbauer, V., Křivánek, J., Bouatouch, K.: Spatial directional radiance caching. Comput. Graph. Forum 28(4), 1189–1198 (2009). (Eurographics Symposium on rendering, EGSR ’09)

    Article  Google Scholar 

  3. Gautron, P., Křivánek, J., Pattanaik, S.N., Bouatouch, K.: A novel hemispherical basis for accurate and efficient rendering. In: Rendering Techniques 2004, Eurographics Symposium on Rendering, pp. 321–330. Eurographics Association, Nicosia (2004)

  4. Herzog, R., Myszkowski, K., Seidel, H.P.: Anisotropic radiance-cache splatting for efficiently computing high-quality global illumination with lightcuts. In: Computer Graphics Forum, vol. 28, pp. 259–268. Wiley, New York (2009)

  5. Jakob, W.: Mitsuba renderer (2010). http://www.mitsuba-renderer.org. Accessed 22 Sept 2015

  6. Jensen, H.W.: Global illumination using photon maps. In: Proceedings of the Eurographics Workshop on Rendering Techniques ’96, pp. 21–30. Springer, Berlin (1996)

  7. Kajiya, J.T.: The rendering equation. SIGGRAPH Comput. Graph. 20(4), 143–150 (1986)

    Article  Google Scholar 

  8. Křivánek, J., Bouatouch, K., Pattanaik, S.N., Žára, J.: Making radiance and irradiance caching practical: Adaptive caching and neighbor clamping. In: Rendering Techniques 2006. Eurographics Symposium on Rendering, pp. 127–138. Eurographics Association, Nicosia (2006)

  9. Křivánek, J., Gautron, P., Pattanaik, S., Bouatouch, K.: Radiance caching for efficient global illumination computation. IEEE Trans. Vis. Comput. Graph. 11(5), 550–561 (2005)

    Article  Google Scholar 

  10. Křivánek, J., Bouatouch, K., Pattanaik, S.N., Žára, J.: Making radiance and irradiance caching practical: adaptive caching and neighbor clamping. in: Rendering Techniques 2006. Eurographics Symposium on Rendering, pp. 127–138. Eurographics Association, Nicosia (2006)

  11. Lafortune, E.P.F., Foo, S.C., Torrance, K.E., Greenberg, D.P.: Non-linear approximation of reflectance functions. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’97, pp. 117–126. ACM Press/Addison-Wesley Publishing Co., New York (1997)

  12. Lafortune, E.P., Willems, Y.D.: Bi-directional path tracing. In: COMPUGRAPHICS, vol. 93, pp. 145–153. Alvor, Portuga (1993)

  13. Lewis, R.R.: Making shaders more physically plausible. In. In Fourth Eurographics Workshop on Rendering, pp. 47–62. University of British Columbia, Vancouver (1994)

  14. Meunier, S., Perrot, R., Aveneau, L., Meneveaux, D., Ghazanfarpour, D.: Cosine lobes for interactive direct lighting in dynamic scenes. Comput. Graph. 34(6), 767–778 (2010)

    Article  Google Scholar 

  15. Ribardière, M., Carré, S., Bouatouch, K.: Adaptive records for irradiance caching. Comput. Graph. Forum 30(6), 1603–1616 (2011)

    Article  Google Scholar 

  16. Scherzer, D., Nguyen, C.H., Ritschel, T., Seidel, H.P.: Pre-convolved Radiance Caching. Comput. Graph. Forum (Proc. EGSR 2012) 4(31), 1391–1397 (2012)

  17. Schwarzhaupt, J., Jensen, H.W., Jarosz, W.: Practical hessian-based error control for irradiance caching. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31(6), 193:1–193:10 (2012)

  18. Serpaggi, X., Peroche, B.: An adaptive method for indirect illumination using light vectors. Comput. Graph. Forum 20, 268–277 (2001). doi:10.1111/1467-8659.00520

    Article  Google Scholar 

  19. Tabellion, E., Lamorlette, A.: An approximate global illumination system for computer generated films. ACM Trans. Graph. 23(3), 469–476 (2004)

    Article  Google Scholar 

  20. Veach, E.: Robust monte carlo methods for light transport simulation. Ph.D. thesis, Stanford, CA, USA (1998)

  21. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., Greenberg, D.P.: Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24(3), 1098–1107 (2005)

    Article  Google Scholar 

  22. Ward, G.J.: Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26(2), 265–272 (1992)

    Article  Google Scholar 

  23. Ward, G.J., Rubinstein, F.M., Clear, R.D.: A ray tracing solution for diffuse interreflection. SIGGRAPH Comput. Graph. 22(4), 85–92 (1988)

    Article  Google Scholar 

  24. Ward, G.J.: Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26(2), 265–272 (1992)

    Article  Google Scholar 

  25. Xu, K., Cao, Y.P., Ma, L.Q., Dong, Z., Wang, R., Hu, S.M.: A practical algorithm for rendering interreflections with all-frequency brdfs. ACM Trans. Graph. 33(1), 10:1–10:16 (2014)

    Article  MATH  Google Scholar 

  26. Zaninetti, J., Serpaggi, X., Peroche, B.: A vector approach for global illumination in ray tracing. Comput. Graph. Forum 17(3), 149–158 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickaël Ribardière.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ogv 21499 KB)

Supplementary material 2 (zip 38123 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidvar, M., Ribardière, M., Carré, S. et al. A radiance cache method for highly glossy surfaces. Vis Comput 32, 1239–1250 (2016). https://doi.org/10.1007/s00371-015-1159-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1159-y

Keywords

Navigation