Skip to main content

Advertisement

Log in

A new sparse representation-based object segmentation framework

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, a novel sparse representation-based object segmentation model is proposed. The model follows from a new energy function that combines the level-set-based sparse representation and the independent component-based shape representation within a unified framework. Before the optimization of the proposed energy, a set of training shapes is firstly projected into the shape space spanned by the independent components. For an arbitrary input shape similar to some of the elements in the training set, the minimization of the energy will automatically recover a sparse shape combination according to the neighbors in the projected shape space to guide the variational image segmentation. We test our model on both public datasets and real applications, and the experimental results show the superior segmentation capabilities of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  3. Roe, E., Mello, C.A.B.: Restoring images of ancient color postcards. Vis. Comput. 31(5), 627–641 (2015)

    Article  Google Scholar 

  4. Ye, J.T., Xu, G.L.: Geometric flow approach for region-based image segmentation. IEEE Trans. Image Process. 21(12), 4735–4745 (2012)

    Article  MathSciNet  Google Scholar 

  5. Lu, Z., Carneiro, G., Bradley, A.P.: An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells. IEEE Trans. Image Process. 24(4), 1261–1272 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chiwoo, P., Huang, J.Z., Ji, J.X., Ding, Y.: Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 1–10 (2013)

    Article  Google Scholar 

  7. Liu, X., Song, M., Tao, D., Bu, J., Chen, C.: Random geometric prior forest for multiclass object segmentation. IEEE Trans. Image Process. 24(10), 3060–3070 (2015)

    Article  MathSciNet  Google Scholar 

  8. Yi, C.C., Tian, Y.L.: Localizing text in scene images by boundary clustering, stroke segmentation, and string fragment classification. IEEE Trans. Image Process. 21(9), 4256–4268 (2012)

    Article  MathSciNet  Google Scholar 

  9. Cremers, D., Schmidt, F., Barthel, F.: Shape priors in variational image segmentation: convexity, Lipschitz continuity and globally optimal solutions. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–6 (2005)

  10. Lan, R., Sun, H.: Automated human motion segmentation via motion regularities. Vis. Comput. 31(1), 35–53 (2015)

    Article  MathSciNet  Google Scholar 

  11. Cremers, D., Schnorr, C., Weickert, J.: Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework. In: IEEE Workshop on Variational and Level Set Methods in Computer Vision, pp. 137–144 (2001)

  12. Tran, T., Pham, V., Shyu, K.: Moment-based alignment for shape prior with variational B-spline level set. Mach. Vis. Appl. 24(5), 1075–1091 (2013)

    Article  Google Scholar 

  13. Lecumberry, F., Pardo, A., Sapiro, G.: Simultaneous object classification and segmentation with high-order multiple shape models. IEEE Trans. Image Process. 19(3), 625–635 (2010)

    Article  MathSciNet  Google Scholar 

  14. Chen, F., Yu, H.M., Hu, R., Zeng, X.: Deep learning shape priors for object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1870–1877 (2013)

  15. Berretti, S., Del Bimbo, A., Pala, P.: Sparse matching of salient facial curves for recognition of 3-D faces with missing parts. IEEE Trans. Inf. Forensics Secur. 8(2), 374–389 (2013)

    Article  Google Scholar 

  16. Boscaini, D., Castellani, U.: A sparse coding approach for local-to-global 3D shape description. Vis. Comput. 30(11), 1233–1245 (2014)

    Article  Google Scholar 

  17. Chen, F., Yu, H.M., Hu, R.: Shape sparse representation for joint object classification and segmentation. IEEE Trans. Image Process. 22(3), 992–1004 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zhong, M., Qin, H.: Sparse approximation of 3D shapes via spectral graph wavelets. Vis. Comput. 30(6), 751–761 (2014)

    Article  Google Scholar 

  19. Abiantun, R., Prabhu, U., Savvides, M.: Sparse feature extraction for pose-tolerant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2061–2073 (2014)

    Article  Google Scholar 

  20. Zhang, S.T., Zhan, Y.Q., Dewan, M., Huang, J.Z.: Sparse shape composition: a new framework for shape prior modeling. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 451–458 (2011)

  21. Zhang, S.T., Zhan, Y.Q., Dewan, M., Huang, J.Z., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape composition. J. Med. Image Anal. 16(3), 265–277 (2012)

    Article  Google Scholar 

  22. Spratling, M.W.: Image segmentation using a sparse coding model of cortical area V1. IEEE Trans. Image Process. 22(4), 1631–1643 (2013)

    Article  MathSciNet  Google Scholar 

  23. Pierre, C.: Independent component analysis: a new concept. J. Signal Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  24. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  25. Chien, J., Hsieh, H.: Convex divergence ICA for blind source separation. IEEE Trans. Audio Speech Lang. Process. 20(1), 302–313 (2012)

    Article  Google Scholar 

  26. Tao, M., Zhou, F., Liu, Y., Zhang, Z.: Tensorial independent component analysis-based feature extraction for polarimetric SAR data classification. IEEE Trans. Geosci. Remote Sens. 53(5), 2481–2495 (2015)

    Article  Google Scholar 

  27. Chen, S.Q., Cremers, D., Radke, R.J.: Image segmentation with one shape prior—a template-based formulation. J. Image Vis. Comput. 30(12), 1032–1042 (2012)

    Article  Google Scholar 

  28. Gonzalez, R.: Fourier based registration of differentially scaled images. In: IEEE International Conference on Image Processing (ICIP), pp. 1282–1285 (2013)

  29. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. J. Math. Comput. 19(90), 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ahn, J., Kim, K., Byun H.: Robust object segmentation using graph cut with object and background seed estimation. In: International Conference on Pattern Recognition (ICPR), pp. 361–364 (2006)

  31. Dong, C., Yan, B., Chen, W., Zeng, L., Chen, J., Li, J.: Iterative graph cuts segmentation with local constraints. In: International Conference on Natural Computation (ICNC), pp. 1377–1381 (2013)

  32. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: speeded up robust features. J. Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  33. Klodt, M., Cremers, D.: A convex framework for image segmentation with moment constraints. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2346–2243 (2011)

  34. Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bredies, K., Lorenz, D.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5), 813–837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. www.openmedimg.com

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (NSFC No. 61471321 and No. 61202400) and National Key Basic Research Project of China (973 Program 2012CB316400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Yu.

Appendices

Appendix 1

Proof of Proposition 1

Given a\(\gamma \in \left[ {0, 1} \right] \), for the arbitrary variational shapes \(\eta ^{1}=\bar{\psi } +\sum _{i=1}^n {b_{i}^{1} m_{i}} \in \xi \) and \(\eta ^{2}=\bar{\psi } +\sum _{i=1}^n {b_{i}^{2} m_{i}} \in \xi \), we have

$$\begin{aligned} \hat{\eta }&=\gamma \psi ^{1}+(1-\gamma )\psi ^{2} \\&=\bar{\psi } +\sum \limits _{i=1}^n {\left( {\gamma (b_{i}^{1} -b_{i}^{2})+b_{i}^{2}} \right) m_{i}} \end{aligned}$$

Let \(\hat{b}_{i} =\gamma (b_{i}^{1} -b_{i}^{2})+b_{i}^{2}\), we have \(\hat{\eta } =\bar{\psi } +\sum _{i=1}^n {\hat{b}_{i} m_{i}} \in \xi \). Thus the shape set \(\xi \) is a convex set. \(\square \)

Appendix 2

Proof of Proposition 2

Since \(A=[\mathrm{\mathbf{a}}_{1}, \mathrm{\mathbf{a}}_{2}, \ldots , \mathrm{\mathbf{a}}_{N}]\in {\mathbb {R}}^{C\times N}\) is the projected training set, and \(s=[s_{1}, s_{2}, \ldots , \) \( s_{N}]^{\text {T}}\in {\mathbb {R}}^{N}\) be a sparse coefficient, for any input s we have \({As}\in {\mathbb {R}}^{C}\), considering that \(b=[b_{1}, b_{2}, \ldots , b_{C}]^{\text {T}}\in {\mathbb {R}}^{C}\) in Proposition 1 is a arbitrary vector, thus all the sparse combination As can be seen as a subset of b and the As-based set \(\zeta \) also can be seen as a subset of vector b-based \(\xi \).

The proof of convexity of \(\zeta \) is similar to Proposition 1, given a \(\gamma \in \left[ {0, 1} \right] \), for the arbitrary variational shapes \(\vartheta ^{1}=\bar{\psi } +\sum _{i=1}^C {(As^{1})_{i} m_{i}} \in \xi \) and \(\vartheta ^{2}=\bar{\psi } +\sum _{i=1}^n {(As^{2})_{i} m_{i}} \in \xi \), we have

$$\begin{aligned} \hat{\vartheta }&=\gamma \vartheta ^{1}+(1-\gamma )\vartheta ^{2} \\&=\bar{\psi } +\sum \limits _{i=1}^n {\left( {A\left( {\gamma \left( {s^{1}-s^{2}} \right) +s^{2}} \right) } \right) m_{i}} \end{aligned}$$

Let \(\hat{s}=\gamma \left( {s^{1}-s^{2}} \right) +s^{2}\), we have \(\hat{\vartheta } =\bar{\psi } +\sum _{i=1}^n \left( {A\hat{s}} \right) _{i} \) \(m_{i} \in \zeta \). Thus the shape set \(\zeta \) is also a convex set. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Yu, H. & Hu, R. A new sparse representation-based object segmentation framework. Vis Comput 33, 179–192 (2017). https://doi.org/10.1007/s00371-015-1171-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1171-2

Keywords

Navigation