Skip to main content
Log in

Interactive directional subsurface scattering and transport of emergent light

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Existing techniques for interactive rendering of deformable translucent objects can accurately compute diffuse but not directional subsurface scattering effects. It is currently a common practice to gain efficiency by storing maps of transmitted irradiance. This is, however, not efficient if we need to store elements of irradiance from specific directions. To include changes in subsurface scattering due to changes in the direction of the incident light, we instead sample incident radiance and store scattered radiosity. This enables us to accommodate not only the common distance-based analytical models for subsurface scattering but also directional models. In addition, our method enables easy extraction of virtual point lights for transporting emergent light to the rest of the scene. Our method requires neither preprocessing nor texture parameterization of the translucent objects. To build our maps of scattered radiosity, we progressively render the model from different directions using an importance sampling pattern based on the optical properties of the material. We obtain interactive frame rates, our subsurface scattering results are close to ground truth, and our technique is the first to include interactive transport of emergent light from deformable translucent objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 3rd edn. A. K. Peters, Ltd, Natick, MA, USA (2008)

  2. Bernabei, D., Hakke-Patil, A., Banterle, F., Benedetto, M.D., Ganovelli, F., Pattanaik, S., Scopigno, R.: A parallel architecture for interactively rendering scattering and refraction effects. IEEE Comput. Graph. Appl. 32(2), 34–43 (2012)

    Article  Google Scholar 

  3. Børlum, J., Christensen, B.B., Kjeldsen, T.K., Mikkelsen, P.T., Noe, K.Ø., Rimestad, J., Mosegaard, J.: SSLPV: subsurface light propagation volumes. In: Proceedings of ACM SIGGRAPH Symposium on High Performance Graphics (HPG’11), pp. 7–14 (2011)

  4. Carr, N.A., Hall, J.D., Hart, J.C.: GPU algorithms for radiosity and subsurface scattering. Proc. Graph. Hardw. 2003, 51–59 (2003)

    Google Scholar 

  5. Chang, C.W., Lin, W.C., Ho, T.C., Huang, T.S., Chuang, J.H.: Real-time translucent rendering using GPU-based texture space importance sampling. Comput. Graph. Forum (Proc. Eurograph.) 27(2), 517–526 (2008)

  6. Chen, G., Peers, P., Zhang, J., Tong, X.: Real-time rendering of deformable heterogeneous translucent objects using multiresolution splatting. Vis. Comput. 28(6–8), 701–711 (2012)

    Article  Google Scholar 

  7. Christensen, P.H., Harker, G., Shade, J., Schubert, B., Batali, D.: Multiresolution radiosity caching for efficient preview and final quality global illumination in movies. Tech. Rep. Pixar Technical Memo #12-06, Pixar (2012)

  8. Dachsbacher, C., Krivánek, J., Hašan, M., Arbree, A., Walter, B., Novák, J.: Scalable realistic rendering with many-light methods. Comput. Graph. Forum 33(1), 88–104 (2014)

    Article  Google Scholar 

  9. Dachsbacher, C., Stamminger, M.: Translucent shadow maps. In: Proceedings of Eurographics Symposium on Rendering (EGSR’03), pp. 197–201 (2003)

  10. d’Eon, E.: A dual-beam 3D searchlight BSSRDF. In: ACM SIGGRAPH 2014 Talks, p. 65 (2014)

  11. d’Eon, E., Irving, G.: A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. (Proc. ACM SIGGRAPH’11) 30(4), 56:1–56:13 (2011)

  12. d’Eon, E., Luebke, D., Enderton, E.: Efficient rendering of human skin. In: Proceedings of Eurographics Symposium on Rendering (EGSR’07), pp. 147–157 (2007)

  13. Di Koa, M., Johan, H.: ESLPV: enhanced subsurface light propagation volumes. Vis. Comput. 30(6–8), 821–831 (2014)

    Article  Google Scholar 

  14. Frisvad, J.R., Hachisuka, T., Kjeldsen, T.K.: Directional dipole model for subsurface scattering. ACM Trans. Graph. 34(1), 5:1–5:12 (2014)

    Article  Google Scholar 

  15. Gerasimov, P.S.: Omnidirectional shadow mapping. In: Fernando, R. (ed.) GPU Gems: Programming Techniques, Tips, and Tricks for Real-time Graphics, vol. 12, pp. 193–203. Addison Wesley, Menlo Park (2004)

  16. Gibson, S.F.F.: Constrained elastic surface nets: generating smooth surfaces from binary segmented data. In: Medical Image Computing and Computer-Assisted Interventation—MICCAI’98. Lecture Notes in Computer Science, vol. 1496, pp. 888–898. Springer, New York (1998)

  17. Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., Levin, A.: Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32(6), 162:1–162:13 (2013)

    Article  Google Scholar 

  18. Gosselin, D.R., Sander, P.V., Mitchell, J.L.: Real-time texture-space skin rendering. In: Engel, W. (ed.) ShaderX\(^3\): Advanced Rendering with DirectX and OpenGL, vol. 2.8, pp. 171–184. Charles River Media, USA (2004)

  19. Green, S.: Real-time approximations to subsurface scattering. In: Fernando, R. (ed.) GPU Gems: Programming Techniques, Tips, and Tricks for Real-time Graphics, vol. 16, pp. 263–278. Addison Wesley, Menlo Park (2004)

  20. Habel, R., Christensen, P.H., Jarosz, W.: Photon beam diffusion: a hybrid Monte Carlo method for subsurface scattering. Comput. Graph. Forum (Proc. EGSR’13) 32(4), 27–37 (2013)

  21. Hable, J., Borshakov, G., Heil, J.: Fast skin shading. In: Engel, W. (ed.) ShaderX\(^7\): Advanced Rendering Techniques, vol. 2.4, pp. 161–173. Charles River Media, USA (2009)

  22. Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7(12), 701–702 (1964)

    Article  Google Scholar 

  23. Hao, X., Baby, T., Varshney, A.: Interactive subsurface scattering for translucent meshes. In: Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics (i3D’03), pp. 75–82 (2003)

  24. Hao, X., Varshney, A.: Real-time rendering of translucent meshes. ACM Trans. Graph. 23(2), 120–142 (2004)

    Article  Google Scholar 

  25. Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. (Proc. ACM SIGGRAPH’02) 21(3), 576–581 (2002)

  26. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. Proc. ACM SIGGRAPH 2001, 511–518 (2001)

    Google Scholar 

  27. Jimenez, J., Sundstedt, V., Gutierrez, D.: Screen-space perceptual rendering of human skin. ACM Trans. Appl. Percept. 6(4), 23:1–23:15 (2009)

    Article  Google Scholar 

  28. Jimenez, J., Whelan, D., Sundstedt, V., Gutierrez, D.: Real-time realistic skin translucency. IEEE Comput. Graph. Appl. 30(4), 32–41 (2010)

    Article  Google Scholar 

  29. Jimenez, J., Zsolnai, K., Jarabo, A., Freude, C., Auzinger, T., Wu, X.C., von der Pahlen, J., Wimmer, M., Gutierrez, D.: Separable subsurface scattering. Comput. Graph. Forum 34(6),188–197 (2015). doi:10.1111/cgf.12529

  30. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. Comput. Graph. (Proc. ACM SIGGRAPH’84) 18(3), 165–174 (1984)

  31. Keller, A.: Instant radiosity. Proc. ACM SIGGRAPH 97, 49–56 (1997)

    Google Scholar 

  32. Kniss, J., Premože, S., Hansen, C., Ebert, D.: Interactive translucent volume rendering and procedural modeling. Proc. IEEE Vis. 2002, 109–116 (2002)

    Google Scholar 

  33. Lensch, H.P.A., Goesele, M., Bekaert, P., Kautz, J., Magnor, M.A., Lang, J., Seidel, H.P.: Interactive rendering of translucent objects. In: Proceedings of Pacific Graphics (PG’02), pp. 214–224 (2002)

  34. Li, D., Sun, X., Ren, Z., Lin, S., Tong, Y., Guo, B., Zhou, K.: TransCut: interactive rendering of translucent cutouts. IEEE Trans. Vis. Comput. Graph. 19(3), 484–494 (2013)

    Article  Google Scholar 

  35. Mertens, T., Kautz, J., Bekaert, P., Reeth, F.V., Seidel, H.P.: Efficient rendering of local subsurface scattering. In: Proceedings of Pacific Graphics (PG’03), pp. 51–58 (2003)

  36. Mertens, T., Kautz, J., Bekaert, P., Seidel, H.P., Reeth, F.V.: Interactive rendering of translucent deformable objects. In: Proceedings of Eurographics Symposium on Rendering (EGSR’03), pp. 130–140 (2003)

  37. Narasimhan, S.G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S.K., Jensen, H.W.: Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. (Proc. ACM SIGGRAPH’06) 25(3), 1003–1012 (2006)

  38. Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., Stich, M.: OptiX: a general purpose ray tracing engine. ACM Trans. Graph. (Proc. ACM SIGGRAPH’10) 29(4), 66:1–66:13 (2010)

  39. Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation, 2nd edn. Morgan Kaufmann/Elsevier, San Francisco (2010)

    Google Scholar 

  40. Rushmeier, H.E., Torrance, K.E.: Extending the radiosity method to include specularly reflecting and translucent materials. ACM Trans. Graph. 9(1), 1–27 (1990)

    Article  MATH  Google Scholar 

  41. Shah, M.A., Konttinen, J., Pattanaik, S.: Image-space subsurface scattering for interactive rendering of deformable translucent objects. IEEE Comput. Graph. Appl. 29(1), 66–78 (2009)

    Article  Google Scholar 

  42. Sheng, Y., Shi, Y., Wang, L., Narasimhan, S.G.: A practical analytic model for the radiosity of translucent scenes. In: Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (i3D’13), pp. 63–70 (2013)

  43. Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. (Proc. ACM SIGGRAPH’03) 22(3), 382–391 (2003)

  44. Velho, L., Gomes, J., de Figueiredo, L.H.: Implicit Objects in Computer Graphics. Springer, New York (2002)

    Book  MATH  Google Scholar 

  45. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., Shum, H.Y.: Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27(1), 9:1–9:18 (2008)

    Google Scholar 

  46. Wang, R., Cheslack-Postava, E., Wang, R., Luebke, D., Chen, Q., Hua, W., Peng, Q., Bao, H.: Real-time editing and relighting of homogeneous translucent materials. Vis. Comput. 24(7), 565–575 (2008)

    Article  Google Scholar 

  47. Wang, R., Tran, J., Luebke, D.: All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Trans. Graph. (Proc. ACM SIGGRAPH’05) 24(3), 1202–1207 (2005)

  48. Wang, Y., Wang, J., Holzschuch, N., Subr, K., Yong, J.H., Guo, B.: Real-time rendering of heterogeneous translucent objects with arbitrary shapes. Comput. Graph. Forum (Proc. Eurograph.) 29(2), 497–506 (2010)

  49. Xu, K., Gao, Y., Li, Y., Ju, T., Hu, S.M.: Real-time homogenous translucent material editing. Comput. Graph. Forum 26(3), 545–552 (2007)

    Article  Google Scholar 

  50. Yan, L.Q., Zhou, Y., Xu, K., Wang, R.: Accurate translucent material rendering under spherical Gaussian lights. Comput. Graph. Forum 31(7), 2267–2276 (2012)

    Article  Google Scholar 

  51. Zhang, F., Sun, H., Nyman, O.: Parallel-split shadow maps on programmable GPUs. In: GPU Gems 3, vol. 10. Addison-Wesley, Menlo Park (2007)

Download references

Acknowledgments

We would like to thank Christian Esbo Agergaard, Technical Director, Sunday Studios for the melting candle model. The Stanford Bunny and the Stanford Dragon models are courtesy of the Stanford University Computer Graphics Laboratory (http://graphics.stanford.edu/da-ta/3Dscanrep/). The HDR environment map in Fig. 15 is courtesy of Tobias Grønbeck Andersen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Dal Corso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal Corso, A., Frisvad, J.R., Mosegaard, J. et al. Interactive directional subsurface scattering and transport of emergent light. Vis Comput 33, 371–383 (2017). https://doi.org/10.1007/s00371-016-1207-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1207-2

Keywords

Navigation