Skip to main content
Log in

A time-integration method for stable simulation of extremely deformable hyperelastic objects

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a time integration method for realtime simulation of extremely deformable objects subject to geometrically nonlinear hyperelasticity. In the presented method, the equation of motion of the system is discretized by the backward Euler method, and linearly approximated through the first-order Taylor expansion. The approximate linear equation is solved with the quasi-minimal residual method (QMR), which is an iterative linear equation solver for non-symmetric or indefinite matrices. The solution is then corrected considering the nonlinear term that is omitted at the Taylor expansion. The method does not demand the constitutive law to guarantee the positive definiteness of the stiffness matrix. Experimental results show that the presented method realizes stable behavior of the simulated model under such deformation that the tetrahedral elements are almost flattened. It is also shown that QMR outperforms the biconjugate gradient stabilized method (BiCGStab) in this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. This result is as expected because QMR performs two matrix-vector multiplications per iteration while CG performs only one.

  2. The criteria \(e_{1,k}\) and \(e_{2,k}\) were not computed in the experiments of Fig. 3, but was performed in another session because the computation of \(e_{1,k}\) and \(e_{2,k}\) resulted in nonnegligible computational time. This computation resulted in roughly 10 % reduction in the number of QMR iterations.

References

  1. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM SIGGRAPH, pp. 43–54 (1998)

  2. Barbič, J.: Exact corotational linear FEM stiffness matrix. Tech. Rep. University of Southern California (2012)

  3. Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24(3), 982–990 (2005)

    Article  Google Scholar 

  4. Barbič, J., Zhao, Y.: Real-time large-deformation substructuring. ACM Trans. Graph. (2011)

  5. Bickel, B., Wicke, M., Gross, M.: Adaptive simulation of electrical discharges. In: Proceedings of Vision, Modeling, and Visualization, pp. 209–216 (2006)

  6. Bouaziz, S., Martin, S., Li, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33(4), 154 (2014)

    Article  Google Scholar 

  7. Brochu, T., Keeler, T., Bridson, R.: Linear-time smoke animation with vortex sheet meshes. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 87–95 (2012)

  8. Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple geometric model for elastic deformations. ACM Trans. Graph. 29(4), 38 (2010)

    Article  Google Scholar 

  9. Civit-Flores, O., Susín, A.: Robust treatment of degenerate elements in interactive corotational FEM simulations. Comput. Graph. Forum 33(6), 298–309 (2014)

    Article  Google Scholar 

  10. Delingette, H.: Biquadratic and quadratic springs for modeling St.Venant Kirchhoff materials. In: Proceedings of 4th International Symposium on Biomedical Simulation. Lecture Notes in Computer Science, vol. 5104, pp. 40–48. Springer, New York (2008)

  11. Desbrun, M., Schröder, P., Barr, A.H.: Interactive animation of structured deformable objects. In: Proceedings of the 1999 Conference on Graphics Interface, pp. 1–8 (1999)

  12. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Dold, A., Eckmann, B. (eds.) Numerical Analysis. Lecture Notes in Mathematics, vol. 506, pp. 73–89. Springer, New York (1976)

  13. Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear system. Numer. Math. 60(1), 315–339 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Freund, R.W., Nachtigal, N.M.: An implementation of the QMR method based on coupled two-term recurrences. SIAM J. Sci. Comput. 15(2), 313–337 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirota, K., Kaneko, T.: Haptic representation of elastic objects. Presence 10(5), 525–536 (2001)

    Article  Google Scholar 

  16. Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 131–140 (2004)

  17. Irving, G., Teran, J., Fedkiw, R.: Tetrahedral and hexahedral invertible finite elements. Graph. Models 68(2), 66–89 (2006)

    Article  MATH  Google Scholar 

  18. Kapre, N., DeHon, A.: Optimistic parallelization of floating-point accumulation. In: Proceedings of 18th IEEE Symposium on Computer Arithmetic, pp. 205–216 (2007)

  19. Kikuuwe, R., Tabuchi, H., Yamamoto, M.: An edge-based computationally efficient formulation of Saint Venant-Kirchhoff tetrahedral finite elements. ACM Trans. Graph. 28(1), 8 (2009)

    Article  Google Scholar 

  20. Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Graph. 32(6), 214 (2013)

    Google Scholar 

  21. Lloyd, B.A., Székely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Trans. Visual Comput. Graph. 13(5), 1081–1094 (2007)

    Article  Google Scholar 

  22. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., Sifakis, E.: Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30(4), 37 (2011) (article 37)

  23. Müller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface, pp. 239–246 (2004)

  24. Myronenko, A., Song, X.: On the closed-form solution of the rotation matrix arising in computer vision problems (2009). arXiv:0904.1613

  25. Nakao, M., Kuroda, T., Oyama, H., Sakaguchi, G., Komeda, M.: Physics-based simulation of surgical fields for preoperative strategic planning. J. Med. Syst. 30(5), 371–380 (2006)

    Article  Google Scholar 

  26. Natsupakpong, S., Çavuşoğlu, M.C.: Determination of elasticity parameters in lumped element (mass-spring) models of deformable objects. Graph. Models 72(6), 61–73 (2010)

    Article  Google Scholar 

  27. Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Eurographics, short presentations, pp. 77–80 (2005)

  28. Nienhuys, H.W., van der Stappen, F.A.: Combining finite element deformation with cutting for surgery simulations. In: Proceedings of Eurographics, pp. 43–52 (2000)

  29. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

  30. Parker, E.G., O’Brien, J.F.: Real-time deformation and fracture in a game environment. In: Proceedings of 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 165–175 (2009)

  31. Patterson, T., Mitchell, N., Sifakis, E.: Simulation of complex nonlinear elastic bodies using lattice deformers. ACM Trans. Graph. 31(6), 197 (2012)

    Article  Google Scholar 

  32. Peterlík, I., Sedef, M., Basdogan, C., Matyska, L.: Real-time visio-haptic interaction with static soft tissue models having geometric and material nonlinearity. Comput. Graph. 34(1), 43–54 (2010)

    Article  Google Scholar 

  33. Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Models 65(5), 305–321 (2003)

    Article  MATH  Google Scholar 

  34. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM (2003)

  35. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saupin, G., Duriez, C., Cotin, S., Grisoni, L.: Efficient contact modeling using compliance warping. In: Proceedings of Computer Graphics International (2008)

  37. Schmedding, R., Teschner, M.: Inversion handling for stable deformable modeling. Visual Comput. 24(7–9), 625–633 (2008)

    Article  Google Scholar 

  38. Sin, F.S., Schroeder, D., Barbič, J.: Vega: Non-linear FEM deformable object simulator. Comput. Graph. Forum 32(1), 36–48 (2013)

    Article  Google Scholar 

  39. Song, C., Zhang, H., Wang, X., Han, J., Wang, H.: Fast corotational simulation for example-driven deformation. Comput. Graph. 40, 49–57 (2014)

    Article  Google Scholar 

  40. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10(1), 36–52 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stomakhin, A., Howes, R., Schroeder, C., Teran, J.M.: Energetically consistent invertible elasticity. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32 (2012)

  42. Teran, J., Sifakis, E., Irving, G., Fedkiw, R.: Robust quasistatic finite elements and flesh simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 181–190 (2005)

  43. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, H.: A Chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Trans. Graph. 34(6), 246 (2015)

    Google Scholar 

  45. Zhong, H., Wachowiak, M.P., Peters, T.M.: A real time finite element based tissue simulation method incorporating nonlinear elastic behavior. Comput. Methods Biomech. Biomed. Eng. 8(3), 177–189 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The surface meshes of Stanford Armadillo and the “bunny” were obtained from the Web site of Stanford Computer Graphics Laboratory (http://graphics.stanford.edu/data/3Dscanrep/). The surface mesh of the “dinosaur” was obtained courtesy of an unknown creator from the AIM@SHAPE Shape Repository (http://shapes.aim-at-shape.net/). They were converted into tetrahedral meshes by using Adventure TetMesh provided by the ADVENTURE Project (http://adventure.sys.t.u-tokyo.ac.jp/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kikuuwe.

Additional information

This work was supported in part by Grant-in-Aid for Exploratory Research, No. 25540044, from Japan Society for the Promotion of Science.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 51884 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuuwe, R. A time-integration method for stable simulation of extremely deformable hyperelastic objects. Vis Comput 33, 1335–1346 (2017). https://doi.org/10.1007/s00371-016-1225-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1225-0

Keywords

Navigation