Skip to main content
Log in

Realistic hair modeling from a hybrid orientation field

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Image-based hair modeling methods enable artists to produce abundant 3D hair models. However, the reconstructed hair models could not preserve the structural details, such as uniformly distributed hair roots, interior strands growing in line with real distribution and exterior strands similar to images. In this paper, we propose a novel approach to construct a realistic 3D hair model from a hybrid orientation field. Our hybrid orientation field is generated from four fields. The first field makes the surface structure of a hairstyle be similar to the input images as much as possible. The second field makes the hair roots and interior hair strands be consistent with actual distribution. The tracing hair strands can be confined to the hair volume according to the third field. And the fourth field makes the growing direction of one point at a strand be compatible with its predecessor. To generate these fields, we construct high-confidence 3D strand segments from the orientation field of point cloud and 2D traced strands. Hair strands automatically grow from uniformly distributed hair roots according to the hybrid orientation field. We use energy minimization strategy to optimize the entire 3D hair model. We demonstrate that our approach can preserve structural details of 3D hair models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aras, R., Başarankut, B., Çapın, T., Özgüç, B.: 3d hair sketching for real-time dynamic & key frame animations. Vis. Comput. 24(7–9), 577–585 (2008)

    Article  Google Scholar 

  2. Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R.W., Gross, M.: Coupled 3d reconstruction of sparse facial hair and skin. ACM Trans. Graph. (TOG) 31(4), 117 (2012)

    Article  Google Scholar 

  3. Bertails, F., Audoly, B., Cani, M.P., Querleux, B., Leroy, F., Lévêque, J.L.: Super-helices for predicting the dynamics of natural hair. In: ACM Transactions on Graphics (TOG), vol. 25, pp. 1180–1187. ACM, New York (2006)

  4. Bonneel, N., Paris, S., Van De Panne, M., Durand, F., Drettakis, G.: Single photo estimation of hair appearance. Comput. Graph. Forum 28(4), 1171–1180 (2009)

    Article  Google Scholar 

  5. Chai, M., Luo, L., Sunkavalli, K., Carr, N., Hadap, S., Zhou, K.: High-quality hair modeling from a single portrait photo. ACM Trans. Graph. (TOG) 34(6), 204 (2015)

    Article  Google Scholar 

  6. Chai, M., Wang, L., Weng, Y., Jin, X., Zhou, K.: Dynamic hair manipulation in images and videos. ACM Trans. Graph. (TOG) 32(4), 75:1–75:8 (2013)

    Article  MATH  Google Scholar 

  7. Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., Zhou, K.: Single-view hair modeling for portrait manipulation. ACM Trans. Graph. (TOG) 31(4), 116:1–116:8 (2012)

    Article  Google Scholar 

  8. Coulon, O., Alexander, D.C., Arridge, S.: Diffusion tensor magnetic resonance image regularization. Med. Image Anal. 8(1), 47–67 (2004)

    Article  Google Scholar 

  9. Echevarria, J.I., Bradley, D., Gutierrez, D., Beeler, T.: Capturing and stylizing hair for 3d fabrication. ACM Trans. Graph. (TOG) 33(4), 125 (2014)

    Article  Google Scholar 

  10. Fu, H., Wei, Y., Tai, C.L., Quan, L.: Sketching hairstyles. In: Proceedings of the 4th Eurographics Workshop on Sketch-Based Interfaces and Modeling, pp. 31–36. ACM, New York (2007)

  11. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  12. Herrera, T.L., Zinke, A., Weber, A.: Lighting hair from the inside: a thermal approach to hair reconstruction. ACM Trans. Graph. (TOG) 31(6), 146:1–146:9 (2012)

    Article  Google Scholar 

  13. Hu, L., Ma, C., Luo, L., Li, H.: Robust hair capture using simulated examples. ACM Trans. Graph. (TOG) 33(4), 126:1–126:10 (2014)

    Article  Google Scholar 

  14. Hu, L., Ma, C., Luo, L., Li, H.: Single-view hair modeling using a hairstyle database. ACM Trans. Graph. (Proc. SIGGRAPH) 34(4), 125 (2015)

  15. Jakob, W., Moon, J.T., Marschner, S.: Capturing hair assemblies fiber by fiber. ACM Trans. Graph. (TOG) 28(5), 164:1–164:9 (2009)

    Article  Google Scholar 

  16. Levin, D.: The approximation power of moving least-squares. Math. Comput. Am. Math. Soc. 67(224), 1517–1531 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, L., Li, H., Rusinkiewicz, S.: Structure-aware hair capture. ACM Trans. Graph. (TOG) 32(4), 76:1–76:11 (2013)

    Article  MATH  Google Scholar 

  18. Luo, L., Zhang, C., Zhang, Z., Rusinkiewicz, S.: Wide-baseline hair capture using strand-based refinement. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 265–272. IEEE (2013)

  19. Marschner, S.R., Jensen, H.W., Cammarano, M., Worley, S., Hanrahan, P.: Light scattering from human hair fibers. ACM Trans. Graph. (TOG) 22(3), 780–791 (2003)

    Article  Google Scholar 

  20. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. (TOG) 21(4), 807–832 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Paris, S., Chang, W., Kozhushnyan, O.I., Jarosz, W., Matusik, W., Zwicker, M., Durand, F.: Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27(3), 30:1–30:9 (2008)

    Article  Google Scholar 

  22. Selle, A., Lentine, M., Fedkiw, R.: A mass spring model for hair simulation. In: ACM Transactions on Graphics (TOG), vol. 27, p. 64. ACM, New York (2008)

  23. Wang, L., Yu, Y., Zhou, K., Guo, B.: Example-based hair geometry synthesis. ACM Trans. Graph. (TOG) 28(3), 56:1–56:9 (2009)

    Google Scholar 

  24. Wang, W.J., Wan, H.G.: Real-time camera tracking using hybrid features in mobile augmented reality. Sci. China Inf. Sci. 58(11), 1–13 (2015)

    MathSciNet  Google Scholar 

  25. Ward, K., Bertails, F., Kim, T.Y., Marschner, S.R., Cani, M.P., Lin, M.C.: A survey on hair modeling: styling, simulation, and rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 213–234 (2007)

    Article  Google Scholar 

  26. Wei, Y., Ofek, E., Quan, L., Shum, H.Y.: Modeling hair from multiple views. ACM Trans. Graph. (TOG) 24(3), 816–820 (2005)

    Article  Google Scholar 

  27. Xu, Z., Wu, H.T., Wang, L., Zheng, C., Tong, X., Qi, Y.: Dynamic hair capture using spacetime optimization. ACM Trans. Graph. (TOG) 33, 224:1–224:11 (2014)

    Google Scholar 

  28. Yamaguchi, T., Wilburn, B., Ofek, E.: Video-based modeling of dynamic hair. In: Advances in Image and Video Technology, pp. 585–596. Springer, New York (2009)

  29. Yan, L.Q., Tseng, C.W., Jensen, H.W., Ramamoorthi, R.: Physically-accurate fur reflectance: modeling, measurement and rendering. ACM Trans. Graph. (TOG) 34(6), 185 (2015)

    Article  Google Scholar 

  30. Yörük, E., Acar, B.: Structure preserving regularization of dt-mri vector fields by nonlinear anisotropic diffusion filtering. In: Proceedings of European Signal Processing Conference (EUSIPCO), Antalya (2005)

  31. Yu, X., Yu, Z., Chen, X., Yu, J.: A hybrid image-cad based system for modeling realistic hairstyles. In: Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 63–70. ACM, New York (2014)

  32. Zinke, A., Yuksel, C., Weber, A., Keyser, J.: Dual scattering approximation for fast multiple scattering in hair. ACM Trans. Graph. (TOG) 27(3), 32:1–32:10 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their valuable suggestions, and Xin Tong, Lvdi Wang and Zexiang Xu for helpful discussions. This paper is supported by National Natural Science Foundation of China (Nos. 61572054, 61272348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Qi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 17136 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Qi, Y. Realistic hair modeling from a hybrid orientation field. Vis Comput 32, 729–738 (2016). https://doi.org/10.1007/s00371-016-1240-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1240-1

Keywords

Navigation