Skip to main content
Log in

A novel surface tension formulation for SPH fluid simulation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Surface tension plays a significant role in fluid simulation, especially small-scale fluid. In this paper, we present a novel surface tension formulation for smoothed particle hydrodynamics (SPH) to simulate interfacial fluid flow. The surface tension formulation is decomposed into three main processes: (1) volume-preserved mesh smoothing, (2) surface tension computation and (3) surface tension transfer. Firstly, we exploit a Lagrangian operator to smooth an initial three-dimensional discrete interfacial surface mesh generated from fluid particles; and then the surface mesh is scaled in a volume-preserved way and the center is translated to its original position to get a smoothed mesh. Secondly, surface tension strengths on the vertices of the interfacial surface mesh are computed according to the offsets from the original surface mesh to the smoothed mesh. Finally, we transfer the surface tension strengths from the mesh vertices onto their neighbor fluid particles in a conservative way. The proposed surface tension solver is simple and straightforward to be plugged into a standard SPH solver. Experimental results show that it is effective and efficient to produce realistic fluid simulations, especially for the phenomena with strong surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang, M., Zhang, S., Zhang, H., Zheng, L.: Simulation of surface tension driven interfacial flow with Smoothed Particle Hydrodynamics method. Comput. Fluids. 59, 61–71 (2012)

    Article  MathSciNet  Google Scholar 

  2. Calagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Comput. Phys. 191, 448–475 (2003)

    Article  MATH  Google Scholar 

  3. Morris, J.P.: Simulating surface tension with smoothed particle hydrodynamics. IntjNumer Meth Fluids. 33, 333–353 (2000)

    Article  MATH  Google Scholar 

  4. Monagehan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  MathSciNet  Google Scholar 

  5. Nugent, S., Posch.: Liquid drops and surface tension with smoothed particle applied mechanics. Phys. Rev. E. 62, 4968–4975 (2000)

  6. Hu, X.Y., Adams, N.A.: A multi-phase SPH method for macroscopic and mesoscopic flows. Comput. Phys. 213, 844–861 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, X.Y., Adams, N.A.: An incompressible multi-phase SPH method. Comput. Phys. 227, 264–278 (2007)

    Article  MATH  Google Scholar 

  8. Hu, X.Y., Adams, N.A.: A constant-density approach for incompressible multiphase SPH. Comput. Phys. 228, 2082–2091 (2009)

    Article  MATH  Google Scholar 

  9. Nils, T., Chris, W., Markus, G., Greg, T.: A multi-scale approach to Mesh-based surface tension flows. ACM. Trans. Graph. 29(3), 48:1–48, 10 (2010)

  10. Muller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. InL Proceedings of Symposium on Computer Animation, pp. 154159 (2003)

  11. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of Symposium on Computer Animation, pp. 6372 (2007)

  12. Adams, B., Pauly, M., Keiser, R., Guibas. L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26(3), Article no 48 (2007)

  13. Markus, I., Jens, O., Barbara, S., Andreas, K., Matthias, T., Markus, I., Jens, O., Barbara, S., Andreas, K., Matthias, T.: SPH fluids in computer graphics. In: Proceedings of Eurographics (Strasbourg, France), Computer Graphics Forum, pp. 21–42 (2014)

  14. Rackbill, J.U.B., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 2(100), 335354 (1992)

    MathSciNet  Google Scholar 

  15. Muller, M., Charypar, D.ee., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154159 (2003)

  16. Muller, M., Olenthaler, B.S., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237244 (2005)

  17. Olenthaler, B.S., Pajarola, R.: Density contrast SPH interfaces. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 211218 (2008)

  18. Nugent, S., Posch, H.: Liquid drops and surface tension with smoothed particle applied mechanics. Phys. Rev. E. 62(4), 49684975 (2000)

    Article  Google Scholar 

  19. Tartakovsky, A., Meakin, P.: Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E. 72(2), 026301 (2005)

    Article  Google Scholar 

  20. Akinci, N., Akinci, G., Teschner, M.: Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. (Proc. SIGGRAPH Asia). 32(6), 182:1182:8 (2013)

  21. Zheng, Q., Yong, J.H., Paul, J.C.: Simulation of bubbles. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA ’06). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, pp. 325–333 (2006)

  22. Hong, J.M., Kim, C.H.: Discontinuous fluids. In: Gross, Markus (ed.) ACM SIGGRAPH 2005 Papers (SIGGRAPH ’05), pp. 915–920. ACM, New York (2005)

    Chapter  Google Scholar 

  23. Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447–2471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lorensen, W.E., Cline, H.E.: Marching cubes: a high-resoulution 3D suface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  25. Yu J., Wojtan, C., Turk, G., Yap, C.: Explicit mesh surfaces for particle based fluids. Comput. Graph. Forum. 31(2pt4), 815–824 (2012)

  26. Betchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  27. Monaghan, J.: Simulating free surface flows with SPH. J. Computat. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  28. Fujiwara, K.: Eigenvalues of Laplacians on a closed riemannian manifold and its nets. Proc. AMS 123, 2585–2594 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Desbrun, M., Meyer, M., Schrder, P., Alan, H.: Barr. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’99), ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, pp. 317–324 (1999)

  30. Kang, Myungjoo, Fedkiw, Ronald P., Liu, Xu-Dong: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15(3), 323–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Losasso, Frank, Gibou, Frdric, Fedkiw, Ron: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23(3), 457–462 (2004)

    Article  Google Scholar 

  32. Misztal, M., Bridson, R., Erleben, K., Brentzen, J., Anton, F.: Optimization-based fluid simulation on unstructured meshes. In: Proc. of Virtual Reality Interactions and Physical Simulations, pp. 1120. 2, 3 (2010)

  33. Erleben, K., Misztal, M., Brentzen, J.: Mathematical foundation of the optimization-based fluid animation method. In: Proc. of Symp. on Comput. Anim, pp. 101110. 3. ACM (2011)

  34. Brochu, T., Batty, C., Bridson, R.: Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29(4), Article 47, 9 (2010)

Download references

Acknowledgments

The authors sincerely thank the anonymous reviewers for their kind suggestions. The authors also thank Xuemin Liu and Cheng Wang at the School of Information Science and Technology, Beijing Forestry University, for their hard work on the final result rendering and to Dong Li for his careful grammar revision. The work in this paper has been supported by the Fundamental Research Funds for the Central Universities (Nos. BLX2012049, 2015ZCQ-XX), National Natural Science Foundation of China (Nos. 61402038, 61100132), CCF-Tencent Open Fund in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Li, X., Liu, Y. et al. A novel surface tension formulation for SPH fluid simulation. Vis Comput 33, 597–606 (2017). https://doi.org/10.1007/s00371-016-1274-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1274-4

Keywords

Navigation