Skip to main content
Log in

Structural sparse representation-based semi-supervised learning and edge detection proposal for visual tracking

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In discriminative tracking, lots of tracking methods easily suffer from changes of pose, illumination and occlusion. To deal with this problem, we propose a novel object tracking method using structural sparse representation-based semi-supervised learning and edge detection. First, the object appearance model is constructed by extracting sparse code features on different layers to exploit local information and holistic information. To utilize unlabelled samples information, the semi-supervised learning is introduced and a classifier is trained which is used to measure candidates. In addition, an auxiliary positive sample set is maintained to improve the performance of the classifier. We subsequently adopt an edge detection to alleviate the error accumulation based on the ranking results from the learned classifier. Finally, the proposed method is implemented under the Bayesian inference framework. Both the proposed tracker and several current trackers are tested on some challenging videos, where the target objects undergo pose change, illumination and occlusion. The experimental results demonstrate that the proposed tracker outperforms the other state-of-the-art methods in terms of effectiveness and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 1, 798–805 (2006)

    Google Scholar 

  2. Avidan, S.: Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1064–1072 (2004)

    Article  Google Scholar 

  3. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  4. Bai, Y., Tang, M.: Robust tracking via weakly supervised ranking svm. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1854–1861 (2012)

  5. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp. 1841–1848 (2013)

  7. Gao, J., Xing, J., Hu, W., Zhang, X.: Graph embedding based semi-supervised discriminative tracker. In: Proceedings of the IEEE international conference on computer vision workshops (ICCVW), pp. 145–152 (2013)

  8. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. Br. Mach. Vis. Conf. (BMVC) 1, 47–56 (2006)

    Google Scholar 

  9. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Computer vision–ECCV 2008, pp. 234–247. Springer (2008)

  10. Hare, S., Saffari, A., Torr, P.H.: Struck: Structured output tracking with kernels. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp. 263–270 (2011)

  11. Hong, Z., Mei, X., Prokhorov, D., Tao, D.: Tracking via robust multi-task multi-view joint sparse representation. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp. 649–656 (2013)

  12. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1822–1829 (2012)

  13. Jiang, N., Liu, W., Wu, Y.: Learning adaptive metric for robust visual tracking. IEEE Trans. Image Process. 20(8), 2288–2300 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: bootstrapping binary classifiers by structural constraints. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 49–56 (2010)

  15. Khanloo, B.Y.S., Stefanus, F., Ranjbar, M., Li, Z.N., Saunier, N., Sayed, T., Mori, G.: A large margin framework for single camera offline tracking with hybrid cues. Comput. Vis. Image Underst. 116(6), 676–689 (2012)

    Article  Google Scholar 

  16. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1269–1276 (2010)

  17. Leichter, I., Lindenbaum, M., Rivlin, E.: Tracking by affine kernel transformations using color and boundary cues. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 164–171 (2009)

    Article  Google Scholar 

  18. Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1305–1312 (2011)

  19. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 58 (2013)

    Google Scholar 

  20. Li, Z., He, S., Hashem, M.: Robust object tracking via multi-feature adaptive fusion based on stability: contrast analysis. Vis. Comput. 31(10), 1319–1337 (2015)

    Article  Google Scholar 

  21. Lin, L., Lu, Y., Pan, Y., Chen, X.: Integrating graph partitioning and matching for trajectory analysis in video surveillance. Image Process. IEEE Trans. 21(12), 4844–4857 (2012)

    Article  MathSciNet  Google Scholar 

  22. Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1313–1320 (2011)

  23. Liu, X., Lin, L., Yan, S., Jin, H., Jiang, W.: Adaptive object tracking by learning hybrid template online. Circ. Syst. Video Technol. IEEE Trans. 21(11), 1588–1599 (2011)

    Article  Google Scholar 

  24. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2259–2272 (2011)

    Article  MathSciNet  Google Scholar 

  25. Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust object tracking using joint color-texture histogram. Int. J. Pattern Recognit. Artif. Intell. 23(07), 1245–1263 (2009)

  26. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 266–280 (2000)

    Article  Google Scholar 

  27. Rantalankila, P., Kannala, J., Rahtu, E.: Generating object segmentation proposals using global and local search. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2417–2424 (2014)

  28. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  29. Supancic, J.S., Ramanan, D.: Self-paced learning for long-term tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2379–2386 (2013)

  30. Tsagkatakis, G., Savakis, A.: Online distance metric learning for object tracking. IEEE Trans. Circ. Syst. Video Technol. 21(12), 1810–1821 (2011)

    Article  Google Scholar 

  31. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  32. Vaswani, N., Rathi, Y., Yezzi, A., Tannenbaum, A.: Deform pf-mt: particle filter with mode tracker for tracking nonaffine contour deformations. IEEE Trans. Image Process. 19(4), 841–857 (2010)

    Article  MathSciNet  Google Scholar 

  33. Wang, D., Lu, H., Yang, M.H.: Least soft-threshold squares tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2371–2378 (2013)

  34. Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Vis. Comput. 31(4), 471–484 (2015)

    Article  Google Scholar 

  35. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2411–2418 (2013)

  36. Wu, Y., Ma, B., Yang, M., Zhang, J., Jia, Y.: Metric learning based structural appearance model for robust visual tracking. IEEE Trans. Circ. Syst. Video Technol. 24(5), 865–877 (2014)

    Article  Google Scholar 

  37. Zeisl, B., Leistner, C., Saffari, A., Bischof, H.: On-line semi-supervised multiple-instance boosting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1879–1879 (2010)

  38. Zha, Y., Yang, Y., Bi, D.: Graph-based transductive learning for robust visual tracking. Pattern Recognit. 43(1), 187–196 (2010)

    Article  MATH  Google Scholar 

  39. Zhan, J., Su, Z., Wu, H., Luo, X.: Robust tracking via discriminative sparse feature selection. Vis. Comput. 31(5), 575–588 (2014)

    Article  Google Scholar 

  40. Zhang, K., Zhang, L., Yang, M.H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)

    Article  Google Scholar 

  41. Zhang, T., Liu, S., Xu, C., Yan, S., Ghanem, B., Ahuja, N., Yang, M.H.: Structural sparse tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 150–158 (2015)

  42. Zhang, Z., Wong, K.H.: Pyramid-based visual tracking using sparsity represented mean transform. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 1226–1233 (2014)

  43. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparse collaborative appearance model. IEEE Trans. Image Process. 23(5), 2356–2368 (2014)

    Article  MathSciNet  Google Scholar 

  44. Zhuang, B., Lu, H., Xiao, Z., Wang, D.: Visual tracking via discriminative sparse similarity map. Image Process. IEEE Trans. 23(4), 1872–1881 (2014)

    Article  MathSciNet  Google Scholar 

  45. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Computer vision–ECCV 2014, pp. 391–405. Springer (2014)

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 61175096, No. 61300082), Specialized Fund for Joint Building Program of Beijing Municipal Education Commission, and Liaoning Natural Science Foundation (2015020015). The authors would like to thank the anonymous editor and reviewers who gave valuable suggestions that have helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liujun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Zhao, Q., Liu, H. et al. Structural sparse representation-based semi-supervised learning and edge detection proposal for visual tracking. Vis Comput 33, 1169–1184 (2017). https://doi.org/10.1007/s00371-016-1279-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1279-z

Keywords

Navigation