Skip to main content
Log in

Full and partial shape similarity through sparse descriptor reconstruction

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We introduce a novel approach to measuring similarity between two shapes based on sparse reconstruction of shape descriptors. The main feature of our approach is its applicability in situations where either of the two shapes may have moderate to significant portions of its data missing. Let the two shapes be A and B. Without loss of generality, we characterize A by learning a sparse dictionary from its local descriptors. The similarity between A and B is defined by the error incurred when reconstructing B’s descriptor set using the basis signals from A’s dictionary. Benefits of using sparse dictionary learning and reconstruction are twofold. First, sparse dictionary learning reduces data redundancy and facilitates similarity computations. More importantly, the reconstruction error is expected to be small as long as B is similar to A, regardless of whether the similarity is full or partial. Our proposed approach achieves significant improvements over previous works when retrieving non-rigid shapes with missing data, and it is also comparable to state-of-the-art methods on the retrieval of complete non-rigid shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dey, T., Li, K., Luo, C., Ranjan, P., Safa, I., Wang, Y.: Persistent heat signature for pose-oblivious matching of incomplete models. Comput. Gr. Forum 29(5), 1545–1554 (2010)

    Article  Google Scholar 

  2. Kaick, O.V., Fish, N., Kleiman, Y., Asafi, S., Cohen-OR, D.: Shape segmentation by approximate convexity analysis. ACM Trans. Gr. 34(1), 4:1–4:11 (2014)

    Article  MATH  Google Scholar 

  3. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Gr. 21(4), 807–832 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Vranić, D.V.: DESIRE: A composite 3D-shape descriptor, In: Proceedings of IEEE international conference on multimedia and expo, pp. 962-965, IEEE (2005)

  5. Körtgen, M., Park, G.J., Novotni, M., Klein, R.: 3D shape matching with 3D shape contexts. In: The 7th central European seminar on computer graphics vol. 3, pp. 5–17 (2003)

  6. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Gr. Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  7. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Gr. 30(1), 1:1–1:20 (2011)

    Article  Google Scholar 

  8. Lavoué, G.: Combination of bag-of-words descriptors for robust partial shape retrieval. Vis. Comput. 28(9), 931–942 (2012)

    Article  Google Scholar 

  9. Zou, C., Wang, C., Wen, Y., Zhang, L., Liu, J.: Viewpoint-aware representation for sketch-based 3D model retrieval. IEEE Signal Process. Lett. 21(8), 966–970 (2014)

    Article  Google Scholar 

  10. Wan, L., Li, S., Miao, Z.J., Cen, Y.G.: Non-rigid 3D shape retrieval via sparse representation, Pacific Graphics Short Papers, pp. 11–16, Eurographics Association (2013)

  11. Litman, R., Bronstein, A., Bronstein, M., Castellani, U.: Supervised learning of bag-of-features shape descriptors using sparse coding. Comput. Gr. Forum 33(5), 127–136 (2014)

    Article  Google Scholar 

  12. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  13. Liu, Z., Bu, S., Han, J.: Locality-constrained sparse patch coding for 3D shape retrieval. Neurocomputing 151, 583–592 (2015)

    Article  Google Scholar 

  14. Tosic, I., Frossard, P.: Dictionary learning. IEEE Signal Process. Mag. 28(2), 27–38 (2011)

    Article  MATH  Google Scholar 

  15. Bimbo, A.D.: Content-based retrieval of 3d models. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2(1), 20–43 (2006)

    Article  MathSciNet  Google Scholar 

  16. Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)

    Article  Google Scholar 

  17. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Gr. Forum 30(6), 1681–1707 (2011)

    Article  Google Scholar 

  18. Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Comput. Aided Des. 39(5), 398–407 (2007)

    Article  Google Scholar 

  19. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace–Beltrami spectra as ’Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  20. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: A quantum mechanical approach to shape analysis. In: IEEE international conference on computer vision workshops, pp. 1626–1633, IEEE (2011)

  21. Boscaini, D., Castellani, U.: A sparse coding approach for local-to-global 3D shape description. Vis. Comput. 30(11), 1233–1245 (2014)

    Article  Google Scholar 

  22. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Gr. 25(1), 130–150 (2006)

    Article  Google Scholar 

  23. Funkhouser, T., Shilane, P.: Partial matching of 3D shapes with priority-driven search. In: Proceedings of the fourth eurographics symposium on geometry processing, pp. 131–142 (2006)

  24. Itskovich, A., Tal, A.: Surface partial matching and application to archaeology. Comput. Gr. 35(2), 334–341 (2011)

    Article  Google Scholar 

  25. van Kaick, O., Zhang, H., Hamarneh, G.: Bilateral maps for partial matching. Comput. Gr. Forum 32(6), 189–200 (2013)

    Article  Google Scholar 

  26. Quan, L., Tang, K.: Polynomial local shape descriptor on interest points for 3D part-in-whole matching. Comput. Aided Des. 59, 119–139 (2015)

    Article  Google Scholar 

  27. Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural descriptors of 3D shapes. Comput. Aided Des. 38(9), 1002–1019 (2006)

    Article  Google Scholar 

  28. Tierny, J., Vandeborre, J.P., Daoudi, M.: Partial 3D shape retrieval by Reeb pattern unfolding. Comput. Gr. Forum 28(1), 41–55 (2009)

    Article  Google Scholar 

  29. Toldo, R., Castellani, U., Fusiello, A.: The bag of words approach for retrieval and categorization of 3D objects. Vis. Comput. 26(10), 1257–1268 (2010)

    Article  Google Scholar 

  30. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3D objects. Int. J. Comput. Vis. 89(2–3), 309–326 (2010)

    Article  Google Scholar 

  31. Ferreira, A., Marini, S., Attene, M., Fonseca, M., Spagnuolo, M., Jorge, J., Falcidieno, B.: Thesaurus-based 3D object retrieval with part-in-whole matching. Int. J. Comput. Vis. 89(2–3), 327–347 (2010)

    Article  Google Scholar 

  32. Jones, P., Maggioni, M., Schul, R.: Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels. Proc. Natl. Acad. Sci. 105(6), 1803–1808 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Aubry, M., Schlickewei, U., Cremers, D.: Pose-consistent 3D shape segmentation based on a quantum mechanical feature descriptor. In: Proceedings of the 33rd international conference on pattern recognition, pp. 122–131, Springer, Berlin (2011)

  34. Litman, R., Bronstein, A.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2014)

    Article  Google Scholar 

  35. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  36. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings of the 26th annual international conference on machine learning, pp. 689–696, ACM (2009)

  37. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

    MATH  MathSciNet  Google Scholar 

  38. Lian, Z., Zhang, J., Choi, S., ElNaghy, H., El-Sana, J., Furuya, T., Giachetti, A., Guler, R.A., Lai, L., Li, C., Li, H., Limberger, F.A., Martin, R., Nakanishi, R.U., Neto, A.P., Nonato, L.G., Ohbuchi, R., Pevzner, K., Pickup, D., Rosin, P., Sharf, A., Sun, L., Sun, X., Tari, S., Unal, G., Wilson, R.C.: Shrec’15 track: Non-rigid 3d shape retrieval. In: Eurographics workshop on 3D object retrieval, pp. 107–120, Eurographics Association (2015)

  39. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of the shape modeling international, pp. 167–178, IEEE (2004)

  40. Kokkinos, I., Bronstein, M.M., Yuille, A.: Dense scale-invariant descriptors for images and surfaces, Technical report. (2012)

  41. Sipiran, I., Meruane, R., Bustos, B., et al.: A benchmark of simulated range images for partial shape retrieval. Vis. Comput. 30(11), 1293–1308 (2014)

    Article  Google Scholar 

  42. Godil, A., Dutagaci, H., Bustos, B. et al.: Range scans based 3D shape retrieval. In: Proceedings of the eurographics workshop on 3D object retrieval, pp. 153–160. Eurographics Association (2015)

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their comments and constructive suggestions. Thanks also go to Warunika Ranaweera, Wallace Lira and Rui Ma for their careful proofreading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Wan or Changqing Zou.

Additional information

The work is supported in part by grants from China Scholarship Council, National Natural Science Foundation of China (61572064 and 61502153), the Fundamental Research Funds for the Central Universities of China (2014JBM027), Natural Science Foundation of Hunan Province of China (2016JJ3031), National 973 Program (2011CB302203) and NSERC (611370).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Zou, C. & Zhang, H. Full and partial shape similarity through sparse descriptor reconstruction. Vis Comput 33, 1497–1509 (2017). https://doi.org/10.1007/s00371-016-1293-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1293-1

Keywords

Navigation