Skip to main content

Advertisement

Log in

LiverDefense: how to employ a tower defense game as a customisable research tool

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In game-related research, it is often necessary to create different versions of a game prototype and gather information about players. To make this possible even for non-programmers, we present LiverDefense, an educational Tower Defense game about the basic functions of the human liver, which can be used as a customisable research tool. LiverDefense can be customised via human-readable XML files both in its degree of difficulty and the content of Likert scale questionnaires to be presented to the player. As a proof of concept, LiverDefense has been successfully employed in a psychological study focused on exploring the effect of perceived control over gameplay on players’ emotions. We report on the analysis of this study with regard to enjoyment and frustration and the resulting insights on using LiverDefense as a customisable research tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abt, C.C.: Serious games. University Press of America, Lanham (1987)

  2. Australian Consortium for Social and Political Research Incorporated: queXML—an open source, XML, multi-mode questionnaire description toolkit. http://quexml.sourceforge.net/

  3. Autodesk: Maya. http://www.autodesk.com/products/maya/

  4. Avery, P., Togelius, J., Alistar, E., Van Leeuwen, R.P.: Computational intelligence and tower defence games. In: Evolutionary Computation (CEC), 2011 IEEE Congress, pp. 1084–1091. IEEE (2011)

  5. Baranowski, T., Buday, R., Thompson, D.I., Baranowski, J.: Playing for real: video games and stories for health-related behavior change. Am. J. Prev. Med. 34(1), 74–82 (2008)

    Article  Google Scholar 

  6. Bassilious, E.: Numeracy in adolescents with type 1 diabetes: assessment and gaming intervention–a pilot project. Ph.D. thesis, University of Toronto (2013)

  7. Bassilious, E., DeChamplain, A., McCabe, I., Stephan, M., Kapralos, B., Mahmud, F., Dubrowski, A.: Power defense: a video game for improving diabetes numeracy. In: Games Innovation Conference (IGIC), 2011 IEEE International, pp. 124–125. IEEE (2011)

  8. Blender Foundation: Blender. http://www.blender.org/

  9. Bode, C., Bode, J.: Ernährungsmedizin: nach dem Curriculum Ernährungsmedizin der Bundesärztekammer (German), chap. Protektive Wirkungen und Missbrauch von Alkohol, pp. 516–538. Georg Thieme Verlag (2004)

  10. Botha, C., Preim, B., Kaufman, A., Takahashi, S., Ynnerman, A.: From individual to population: Challenges in medical visualization. In: Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.) Scientific visualization, mathematics and visualization, pp. 265–282. Springer, London (2014). doi:10.1007/978-1-4471-6497-5_23

    Google Scholar 

  11. Brich, J., Rogers, K., Frommel, J., Weidhaas, M., Brückner, A., Mirabile, S., Dorn, T., Riemer, V., Schrader, C., Weber, M.: Liverdefense: using a tower defense game as a customisable research tool. In: Games and Virtual Worlds for Serious Applications (VS-Games), 2015 7th International Conference, pp. 1–8 (2015). doi:10.1109/VS-GAMES.2015.7295779

  12. Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86(3), 490–503 (1998). doi:10.1109/5.662874

    Article  Google Scholar 

  13. Charles, D., Black, M.: Dynamic player modeling: a framework for player-centered digital games. In: Proc. of the International Conference on Computer Games: Artificial Intelligence, Design and Education, pp. 29–35 (2004)

  14. Clements, P., Pesner, J., Shepherd, J.: The teaching of immunology using educational: gaming paradigms. In: Proceedings of the 47th Annual Southeast Regional Conference, p. 21. ACM (2009)

  15. Csikszentmihalyi, M.: Flow: the psychology of optimal experience, vol. 41. HarperPerennial, New York (1991)

    Google Scholar 

  16. Dickey, M.D.: Engaging by design: how engagement strategies in popular computer and video games can inform instructional design. Educ. Technol. Res. Dev. 53(2), 67–83 (2005)

    Article  Google Scholar 

  17. DiPietro, M., Ferdig, R.E., Boyer, J., Black, E.W.: Towards a framework for understanding electronic educational gaming. J. Educ. Multimed. Hypermed. 16(3), 225–248 (2007)

    Google Scholar 

  18. Falah, J., Charissis, V., Khan, S., Chan, W., Alfalah, S.F., Harrison, D.K.: Development and evaluation of virtual reality medical training system for anatomy education. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Intelligent Systems in Science and Information 2014, Studies in Computational Intelligence, vol. 591, pp. 369–383. Springer International Publishing (2015). doi:10.1007/978-3-319-14654-6_23

  19. Friese, K., Mylonas, I., Schulze, A.: Infektionserkrankungen der Schwangeren und des Neugeborenen (German). Springer, Berlin (2013)

  20. Frommel, J., Rogers, K., Brich, J., Besserer, D., Bradatsch, L., Ortinau, I., Schabenberger, R., Riemer, V., Schrader, C., Weber, M.: Integrated Questionnaires: maintaining presence in game environments for self-reported data acquisition. In: Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’15, pp. 359–368. ACM, New York (2015). doi:10.1145/2793107.2793130

  21. Gilleade, K.M., Dix, A.: Using frustration in the design of adaptive videogames. In: Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE ’04, pp. 228–232. ACM, New York (2004). doi:10.1145/1067343.1067372

  22. Grodal, T.: Video games and the pleasures of control. In: Grodal, T., Dolf, Z., Vorderer, P. (eds.) Media entertainment: the psychology of its appeal, pp 197–213. Lawrence Erlbaum Associates Publishers, Mahwah (2000)

  23. Hung, A., Wu, T., Hunter, P., Mithraratne, K.: A framework for generating anatomically detailed subject-specific human facial models for biomechanical simulations. Vis. Comput. 31(5), 527–539 (2015). doi:10.1007/s00371-014-0945-2

    Article  Google Scholar 

  24. IBM: SPSS—predictive analytics software and solutions. http://www.ibm.com/spss

  25. Johnson, D., Nacke, L.E., Wyeth, P.: All about that base: differing player experiences in video game genres and the unique case of MOBA games. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pp. 2265–2274. ACM, New York (2015). doi:10.1145/2702123.2702447

  26. Li, M.C., Tsai, C.C.: Game-based learning in science education: a review of relevant research. J. Sci. Educ. Technol. 22(6), 877–898 (2013)

    Article  Google Scholar 

  27. Liehr, H.: Leber, Galle, Bauchspeicheldrüse: Wirksame Hilfe bei Beschwerden (German). Trias (2002)

  28. Likert, R.: A technique for the measurement of attitudes. Archives of Psychology. The Science Press, New York (1932)

  29. LimeSurvey: Lime Survey—The Open Source Survey Application. https://www.limesurvey.org

  30. Liu, S., Ding, W.: An approach to evaluation component design in building serious game. In: Learning by Playing. Game-based Education System Design and Development, pp. 141–148. Springer, Berlin (2009)

  31. Luboz, V., Kyaw-Tun, J., Sen, S., Kneebone, R., Dickinson, R., Kitney, R., Bello, F.: Real-time stent and balloon simulation for stenosis treatment. Vis. Comput. 30(3), 341–349 (2014). doi:10.1007/s00371-013-0859-4

    Article  Google Scholar 

  32. Lucas, K., Sherry, J.L.: Sex differences in video game play: a communication-based explanation. Commun. Res. 31(5), 499–523 (2004)

    Article  Google Scholar 

  33. Malone, T.W.: Toward a theory of intrinsically motivating instruction. Cogn. Sci. 5(4), 333–369 (1981)

    Article  Google Scholar 

  34. Malone, T.W., Lepper, M.R.: Making learning fun: a taxonomy of intrinsic motivations for learning. Aptit. Learn. Instr. 3(1987), 223–253 (1987)

    Google Scholar 

  35. Mangold, K.: Educating a new generation: teaching baby boomer faculty about millennial students. Nurse Educ. 32(1), 21–23 (2007)

    Article  Google Scholar 

  36. McCallum, S.: Gamification and serious games for personalized health. Stud. Health Technol. Inform. 177, 85–96 (2012)

    Google Scholar 

  37. Meyer, D.K., Turner, J.C.: Re-conceptualizing emotion and motivation to learn in classroom contexts. Educ. Psychol. Rev. 18(4), 377–390 (2006). doi:10.1007/s10648-006-9032-1

    Article  Google Scholar 

  38. Michael, D.R., Chen, S.L.: Serious games: Games that educate, train, and inform. Muska & Lipman/Premier-Trade, Mason (2005)

  39. Microsoft Corporation: Microsoft Excel—Create order. https://products.office.com/excel

  40. Mitgutsch, K., Alvarado, N.: Purposeful by design?: a serious game design assessment framework. In: Proceedings of the International Conference on the foundations of digital games, pp. 121–128. ACM (2012)

  41. Nacke, L. E., Drachen, A., Göbel, S.: Methods for evaluating gameplay experience in a serious gaming context. Int. J. Comput. Sci. Sport 9(2), 1–12 (2010)

  42. Okuda, Y., Bryson, E.O., DeMaria, S., Jacobson, L., Quinones, J., Shen, B., Levine, A.I.: The utility of simulation in medical education: what is the evidence? Mt. Sinai J. Med. J. Transl. Personal. Med. 76(4), 330–343 (2009)

    Article  Google Scholar 

  43. Pan, J., Zhao, C., Zhao, X., Hao, A., Qin, H.: Metaballs-based physical modeling and deformation of organs for virtual surgery. Vis. Comput. 31(6–8), 947–957 (2015). doi:10.1007/s00371-015-1106-y

    Article  Google Scholar 

  44. Papastergiou, M.: Exploring the potential of computer and video games for health and physical education: a literature review. Comput. Educ. 53(3), 603–622 (2009)

    Article  Google Scholar 

  45. Paulus, C., Untereiner, L., Courtecuisse, H., Cotin, S., Cazier, D.: Virtual cutting of deformable objects based on efficient topological operations. Vis. Comput. 31(6–8), 831–841 (2015). doi:10.1007/s00371-015-1123-x

    Article  Google Scholar 

  46. Pekrun, R.: The control-value theory of achievement emotions: assumptions, corollaries, and implications for educational research and practice. Educ. Psychol. Rev. 18(4), 315–341 (2006)

    Article  Google Scholar 

  47. Prensky, M.: Computer games and learning: digital game-based learning. Handb. Comput. Game Stud. 18, 97–122 (2005)

    Google Scholar 

  48. Rauterberg, M.: About a framework for information and information processing of learning systems. In: ISCO, pp. 54–69 (1995)

  49. Riemann, J.F., Fischbach, W., Galle, P., Mössner, J.: Gastroenterologie in Klinik und Praxis: Das komplette Referenzwerk für Klinik und Praxis (German). Thieme (2007, German)

  50. Sawyer, B.: From cells to cell processors: the integration of health and video games. Comput. Graph. Appl. IEEE 28(6), 83–85 (2008). doi:10.1109/MCG.2008.114

    Article  Google Scholar 

  51. Schrader, C., Brich, J., Frommel, J., Riemer, V., Rogers, K.: Rising to the challenge: an emotion-driven approach towards adaptive serious games (in press). In: Ma, M., Oikonomou, A., Jain, L. (eds.) Serious Games and Edutainment Applications, vol. 2. Springer, London (2016)

  52. Schutz, P. A., Pekrun, R. (eds.) Introduction to emotions in education. Emotion in Education, pp 3–10. Elsevier Academic Press, San Diego (2007)

  53. Scirra: Construct 2. https://www.scirra.com/construct2

  54. Steiner-Welz, S.: Die wichtigsten Körperfunktionen der Menschen (German). Reinhard Welz Vermittlerverlag Mannheim (2005)

  55. The Inkscape Project: Inkscape—Draw freely. https://inkscape.org

  56. Thompson, J.: Food fight. Tech. rep. (2010)

  57. Ullrich, S., Kuhlen, T.: Haptic palpation for medical simulation in virtual environments. Vis. Comput. Graph. IEEE Trans. 18(4), 617–625 (2012). doi:10.1109/TVCG.2012.46

    Article  Google Scholar 

  58. Um, E., Plass, J.L., Hayward, E.O., Homer, B.D., et al.: Emotional design in multimedia learning. J. Educ. Psychol. 104(2), 485 (2012)

    Article  Google Scholar 

  59. Unity Technologies: Unity. http://unity3d.com/unity

  60. Van Lankveld, G., Spronck, P., Van Den Herik, H.J., Rauterberg, M.: Incongruity-based adaptive game balancing. In: Advances in computer games, pp. 208–220. Springer, Berlin (2010)

  61. Vorderer, P., Klimmt, C., Ritterfeld, U.: Enjoyment: at the heart of media entertainment. Commun. Theory 14(4), 388–408 (2004)

    Article  Google Scholar 

  62. Wattanasoontorn, V., Boada, I., García, R., Sbert, M.: Serious games for health. Entertain. Comput. 4(4), 231–247 (2013)

    Article  Google Scholar 

  63. Wouters, P.,Van der Spek, E.D.,VanOostendorp, H.: Current practices in serious game research: a review from a learning outcomes perspective. In: Connolly, T., Stansfield, M., Boyle, L. (eds.) Games-Based Learning Advancements for Multisensory Human Computer Interfaces: Techniques and Effective Practices, pp. 232–250. IGI-Global, Hershey (2009). doi:10.4018/978-1-60566-360-9.ch014

  64. Wu, J., Westermann, R., Dick, C.: A survey of physically based simulation of cuts in deformable bodies. In: Computer Graphics Forum. Wiley Online Library (2015)

  65. Xia, P., Lopes, A., Restivo, M.: Virtual reality and haptics for dental surgery: a personal review. Vis. Comput. 29(5), 433–447 (2013). doi:10.1007/s00371-012-0748-2

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted within the project “Serious Games–Skill Advancement Through Adaptive Systems” being funded by the Carl Zeiss Foundation and as part of the project “EffIS–Efficient and Interactive Studying” (FKZ: 16OH21032) funded since 2014 by the BMBF (German Federal Ministry of Education and Research) within the program “Aufstieg durch Bildung: Offene Hoch-schulen”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Brich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brich, J., Rogers, K., Frommel, J. et al. LiverDefense: how to employ a tower defense game as a customisable research tool. Vis Comput 33, 429–442 (2017). https://doi.org/10.1007/s00371-016-1314-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1314-0

Keywords

Navigation