Skip to main content
Log in

Constant time texture filtering

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel texture-filtering method which can effectively separate the main image structures from textures even with high variations. Our nonlinear image decomposition is based on a variant of the weighted-median filter which incorporates structure and texture information into the guidance image. To guarantee effective texture filtering, the guidance image not only contains prominent structure edges of the input, but also reduces the contrast in texture regions. We develop a constant time algorithm for the generation of guidance image by formulating the calculation of local extrema as a histogram volume aggregation problem. The local nature of the algorithm enables an efficient parallel GPU implementation. In addition, we demonstrate the effectiveness of our texture-filtering method in the context of detail enhancement, JPEG artifact removal, inverse halftoning, image segmentation, edge detection, and image stylization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition-modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  3. Bao, L., Song, Y., Yang, Q., Yuan, H., Wang, G.: Tree filtering: efficient structure-preserving smoothing with a minimum spanning tree. IEEE Trans. Image Process. 23(2), 555–569 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cho, H., Lee, H., Kang, H., Lee, S.: Bilateral texture filtering. ACM Trans. Graph. 33(128), 128:1–128:8 (2014)

  5. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  6. Du, H., Jin, X., Willis, P.: Two-level joint local laplacian texture filtering. Vis.Comput. 1–12 (2015). doi:10.1007/s00371-015-1138-3

  7. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 67:1–67:10 (2008)

  8. He, K., Sun, J.: Fast guided filter (2015). arXiv:5050.0996

  9. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  10. Karacan, L., Erdem, E., Erdem, A.: Structure-preserving image smoothing via region covariances. ACM Trans. Graph. 32(6), 176:1–176:11 (2013)

  11. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint Bilateral Upsampling. ACM Trans. Graph. 26(3), 96:1–96:5 (2007)

  12. Kopf, J., Lischinski, D.: Digital reconstruction of halftoned color comics. ACM Trans. Graph. 31(6), 140:1–140:10 (2012)

  13. Kyprianidis, J.E., Döllner, J.: Image abstraction by structure adaptive filtering. In: Proceedings of EG UK Theory and Practice of Computer Graphics, pp. 51–58 (2008)

  14. Liu, C., Zhao, J., Shen, Y., Zhou, Y., Wang, X., Ouyang, Y.: Texture filtering based physically plausible image dehazing. Vis. Comput. 32(6), 911–920 (2016)

    Article  Google Scholar 

  15. Ma, Z., He, K., Wei, Y., Sun, J., Wu, E.: Constant time weighted median filtering for stereo matching and beyond. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. ICCV ’13, pp. 49–56. IEEE Computer Society, Washington, DC, USA (2013)

  16. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graphi. 23(3), 664–672 (2004)

    Article  Google Scholar 

  17. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Su, Z., Luo, X., Deng, Z., Liang, Y., Ji, Z.: Edge-preserving texture suppression filter based on joint filtering schemes. IEEE Trans. Multimedia 15(3), 535–548 (2013)

    Article  Google Scholar 

  19. Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. 28(5), 147:1–147:9 (2009)

  20. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. Proceedings of the Sixth International Conference on Computer Vision. ICCV ’98, pp. 839–846. IEEE Computer Society, Washington, DC, USA (1998)

  21. Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. ACM Trans. Graph. 25(3), 1221–1226 (2006)

    Article  Google Scholar 

  22. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l0 gradient minimization. ACM Trans. Graph. 30(6), 174:1–174:12 (2011)

  23. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. 31(6), 139:1–139:10 (2012)

  24. Yin, W., Goldfarb, D., Osher, S.: Image cartoon-texture decomposition and feature selection using the total variation regularized L1 functional. In: Proceedings of the Third International Conference on Variational. Geometric, and Level Set Methods in Computer Vision, VLSM ’05, pp. 73–84. Springer, Berlin (2005)

  25. Zhang, Q., Xu, L., Jia, J.: 100+ times faster weighted median filter (wmf). In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. CVPR ’14, pp. 2830–2837. IEEE Computer Society, Washington, DC, USA (2014)

  26. Zhao, H., Jin, X., Shen, J., Mao, X., Feng, J.: Real-time feature-aware video abstraction. Vis. Comput. 24(7), 727–734 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank our anonymous reviewers for their constructive suggestions and comments which definitely improve the paper. This paper was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY15F020019 and LQ14F020006), the Science and Technology Planning Project of Wenzhou, China (Grant No. G20150019), and the Open Project of the State Key Lab of CAD&CG, Zhejiang University (Grant Nos. A1610 and A1510). X. Jin was supported by the National Natural Science Foundation of China (Grant No. 61472351). H. Du was partially supported by the Scientific Research Fund of Zhejiang Provincial Education Department, China (Grant No. Y201534269) and the Higher Education Class Teaching Reform Project of Zhejiang Province (Grant No. kg2015283). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GeForce GTX Titan X GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanli Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Jiang, L., Jin, X. et al. Constant time texture filtering. Vis Comput 34, 83–92 (2018). https://doi.org/10.1007/s00371-016-1315-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1315-z

Keywords

Navigation