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Abstract Scenes in computer animation can have ex-

treme complexity, especially when high resolution ob-

jects are placed in the distance and occupy only a few

pixels. A useful technique for level-of-detail in these

cases is to use a sparse voxel octree containing both

hard surfaces and a participating medium consisting

of microflakes. In this paper, we discuss three different

methods for approximating the distribution of normals

of the microflakes, which is needed to compute extinc-

tion, inscattering of attenuated direct illumination, and

multiple scattering in the participating medium. Specif-

ically, we consider A) k-means approximation with k

weighted representatives, B) expansion in spherical har-

monics, and C) the distribution of the normals of a

specific ellipsoid. We compare their image quality, data

size, and computation time.
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1 Introduction

Scene models for computer animation such as in Fig-

ure 1 often have extreme complexity if the original de-

tailed models are used for objects in the distance. One

method of dealing with this data explosion is to have

multiple levels of detail, so that simplified models can

be used for more distant objects. Another method is to

summarize into a volume data structure the aspects of

the model that affect rendering. We are using the lat-

ter method, with a Sparse Voxel Octree (SVO), of the

sort described by [1]. The polygons (or micropolygons,

see [2]) are scan converted into the leaves of the octree

structure, averaging the plane equation, plane normal

variance, specular and diffuse color, and other shading

quantities such as surface roughness. These quantities

are then averaged further into the higher octree levels.

When marching along a viewing ray through the octree,

cells are selected at the octree level appropriate to the

ray differential (randomly jittered to break up any vis-

ible transitions in shading from different SVO levels),

and the ray is intersected with the cell’s stored aver-

age surface plane, as clipped to the cell volume. The

first point intersected is shaded by combining the plane

normal variance into the surface roughness. We refer to

this as the “hard surface” method.

One of our goals was to model distant vegetation,

as in figure 1. The hard surface method does not work

well for this, because we are intersecting the ray with

the average plane, while the octree cell should actu-

ally represent many small plant leaves inside its vol-

ume. In addition, even a single tiny leaf in the volume
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Fig. 1 A wide angle view of a forest of 218 trees of various species, path traced using the spherical harmonic microflake
normal distribution. The sparse voxel octree used 2,434,796,669 bytes, while a single pine tree polygon representation needed
1,816,829,593 bytes.

may cause an intersection with its extended plane, mak-

ing the apparent size of the leaf bloom larger. To solve

these problems, we treat the leaf surfaces in an octree

cell as a volume density of microflakes (infinitesimal

pieces of flat surface), and use volume rendering meth-

ods to composite the inscattering and extinction along

the ray as it steps through the octree cells. Both the

inscattering and the extinction depend on the distri-

bution of the microflake surface normals. This paper

compares several methods of representing this distribu-

tion by approximations specified by a small number of

parameters. Ideally, such approximations should give:

1. a compact representation,

2. efficient averaging up the octree hierarchy,

3. efficient computation of the extinction coefficient,

4. efficient computation of the inscattering,

5. efficient sampling of the scattered ray direction for

global illumination path tracing, and

6. final renderings that well approximate converged

ray traced or path traced images of the original ge-

ometry.

The contributions of this paper are:

– two new methods to approximate a distribution of

normals, by k-means representatives and by spheri-

cal harmonics (SH), and

– their comparison with each other and the SGGX

distribution of Heitz et al. [3], which uses the distri-

bution of normals of a specific ellipsoid.

Section 2 discusses related work, and section 3 de-

scribes the three approximations and how their fitting

parameters are computed. Section 4 discusses how the

extinction and inscattering are computed from the dis-

tribution of microflake normals. Section 5 shows how

sample directions for path tracing are computed, sec-

tion 6 discusses optimizations for double-sided microflakes,

and section 7 describes compression of the data. Sec-

tion 8 presents image accuracy, data size, and timing

results, which are discussed in section 9. The appendix

has mathematical details for the SH approximation.

2 Related Work

The fundamental paper on level of detail was Crow [4],

which first suggested designing several different polygo-

nal models for the same object. This idea was refined by

Hoppe to create the simplified models automatically [5],

and continuously transition between them [6].

Octrees have long been used to describe sparse vol-

ume data and speed up ray tracing. Neyret [7] used a

hierarchical octree volume with the reflectance in each

cell represented by the distribution of normals of an

ellipsoid. Heitz et al. [3] did something similar in the

context of the SVO of [1]. We have also used a version

of this SVO, enhanced to store the various approxima-

tions to the distribution of microflake normals, and with

some new compression mechanisms.

The basic principles of volume rendering participat-

ing media, accounting for the optical effects of extinc-

tion and inscattering, are explained in [8]. Normally,

the extinction is isotropic, independent of the view-

ing direction. The scattering phase function, giving the

distribution of scattering directions ωo from an incom-

ing direction ωi, is also normally isotropic, in the sense

that it depends only on the angle between ωi and ωo.

However, in the case of an anisotropic distribution of

microflake normals, these isotropies are not present,

and the full dependence of the extinction and inscat-

tering on both ωo and ωi must be accounted for. This

involves the distribution of visible normals, which ac-

counts for both masking and foreshortening for bumpy

surfaces [9], and for foreshortening only in the case of

microflakes, as discussed in [3], and briefly in section 4

below. An early computer graphics paper considering

the optical effects of a microflake normal distribution

is [10], which simulated multiple scattering in a tree
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canopy. More recently, Jacob et al. [11] discussed the

radiation transport equation for a general anisotropic

distribution of microflake normals, and also the corre-

sponding diffusion approximation. Zhao et al. [12], [13]

modeled cloth as a collection of fibers extracted from

micro-CT, and modeled the microfacet normal distri-

bution of a fiber as a gaussian in the dot product of the

microflake normal and the fiber axis.

3 Representing the distribution of microflake

normals

Let g(x, ωn) be the local probability distribution of the

microflake normals with direction ωn at position x, let

ρ(x) be the density of total microflake area per unit vol-

ume, and let h(x, ωn) = ρ(x)g(x, ωn). Then h(x, ωn)dωn
is the total area per unit volume of microflakes with nor-

mals within a solid angle dωn about ωn. We will usually

mean this scaled h(x, ωn) when we say the distribution

of microflake normals below, even though this is not a

probability distribution.

We will compare three different methods of approx-

imating this distribution of microflake normals, by:

A) a finite number k of weighted δ-functions of unit

direction,

B) an SH expansion of fixed maximum order L, or

C) the distribution of normals of an origin-centered

ellipsoid.

If the degrees of freedom are all expressed as floats,

then method A) requires 4k floats, method B) requires

(L + 1)2 floats, and method C) requires only 6 floats

at each SVO node. Later we will discuss compression of

this data.

When scan converting polygons into the SVO, we re-

cursively split the polygons by the slicing planes defin-

ing the SVO volume cells, until the fragments are the

size of the leaf cells. For the hard surface contribution,

we compute the area inside each intersected leaf cell,

and add that area and also the area-weighted diffuse

color, specular color, unit normal, and other shading

parameters like surface roughness, to the accumulated

values for that leaf cell. After all the polygons are scan

converted, we add these weighted quantities to the par-

ent cells up the octree hierarchy, and then divide all

these summed quantities by the sum of the weights.

We also compute the variance of the normals. An SVO

cell can contain both hard surfaces and microflakes,

and the colors of the microflakes are averaged sepa-

rately into the SVO as above, so that the plant leaves

can have a different color than the hard surface trunks

and branches. The calculations to fit each of the three

microflake normal distribution approximation methods

into this SVO framework are described next.

The k-means algorithm for method A) converges to

a local minimum of its cost function, which depends

on the initial cluster center normal representatives cho-

sen. To get a good spread in the initial representatives,

a first pass through the polygon fragments finds up

to k representative normals per octree cell. We take

a new area-weighted representative normal whenever

there are less than k and the current polygon fragment

normal differs from all existing representative normals

by more than a threshold angle. Otherwise we add the

area-weighted fragment normal to the representative to

which is closest in direction. Then, in subsequent passes

through the polygons, we reassign each polygon frag-

ment’s contribution to the representative to which it

is closest, and compute new weighted average repre-

sentative directions, thus implementing a weighted k-

means algorithm. When all polygons are handled, we

use the same procedure to go up the octree hierarchy,

assigning child cell weighted representatives to parent

cell representatives, and computing the area-weighted

average of the normals in each representative’s group.

Currently we use only two passes through all the poly-

gons in computing the k-means for the leaf cells of

the SVO, since such passes are expensive, but more

passes to propagate the leaf representatives into the k-

means of their ancestor cells up the hierarchy, since this

does not need the full polygon data. The resulting ap-

proximation is an area-weighted sum of the δ-functions

for the representative unit normals in each SVO cell.

We also save the variance of the normals in the clus-

ter assigned to each representative, estimated from the

length of the weighted average normal using the method

of [14], which does not require a separate pass through

the polygon data. This variance per representative is

the fourth of the 4k floats mentioned above. For greater

accuracy, we could store the covariance matrix of the

distribution of the microfacet normals assigned to each

representative normal, as in [15], as done for method

C) below, but this would take 6 extra floats per repre-

sentative normal, instead of one.

Method B) fits the distribution of normals using the

real spherical harmonic basis functions Ylm(θ, φ).

Since the SH basis functions are orthonormal, the

best L2 fit to a function h(θ, φ), of the form

h(θ, φ) ≈
L∑
l=0

l∑
m=−l

hlmYlm(θ, φ) (1)

has coefficients given by

hlm =

∫ 2π

0

∫ π

0

Ylm(θ, φ)h(θ, φ) sinθ dθ dφ. (2)

So for an area-weighted δ-function representing the con-

tribution of a polygon fragment with a constant unit
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normal to an SH basis function coefficient, this inte-

gral is just the area times the that basis function eval-

uated at that normal. These contributions are added

into the leaf cells, and then into parent cells up the oc-

tree hierarchy. There is no need to divide by the sum

of the weights, because the goal is to approximate an

area weighted density h(x, ωn). However, since this is

an area per unit volume, the accumulated sum must be

divided by the volume of the octree cell. (This is also

the case for method A).) We have experimented with

spherical harmonic orders L up to 4.

For method C), Heitz et al. [3] define the SGGX

distribution of squared projected areas of an ellipsoid

as a quadratic form in the unit projection direction

vector. They define it in the coordinate system of the

unit eigenvector directions (the ellipsoid’s major, semi-

major, and minor axis directions) by a diagonal ma-

trix of the squared projected areas in these directions,

and use the rotation matrix formed from these unit

eigenvector directions to transform this quadratic form

into the world coordinate system. They prove that the

square root of this quadratic form evaluated at any

other direction gives the projected area of the ellip-

soid in that direction. For a polygon fragment from a

smooth surface, they use a “surface-like” ellipsoid with

unit projected area in the surface normal direction, and

very small projected area in the perpendicular direc-

tions, while for a fragment of a curve (for fur, hair, or

pine needles) they use a “fiber-like” ellipsoid, with a

small projected area along the curve tangent direction,

and unit projected areas along perpendicular directions.

For the images in that paper, they just accumulate

the six independent elements of the positive definite 3

by 3 symmetric matrix for the quadratic form into the

leaf cells, and then into the octree hierarchy, but they

admit that this does not properly accumulate the dis-

tributions of normals of child cells into parents. So we

use the two pass method they describe in their section

4.3, subsection “Parameter Estimation from Arbitrary

Distributions”. In the first pass, we accumulate the co-

variance matrices for the distributions. The covariance

matrix contribution to an octree leaf cell of a clipped

polygon fragment with unit normal column vector ω is

simply the fragment’s area times the outer product ma-

trix ωωT. These contributions are summed in each leaf

cell, and then up the hierarchy. At the end of this pass,

we compute and save the eigenvectors of the resulting

symmetric covariance matrix in each octree cell. In a

second pass through the polygons, we compute the pro-

jected areas of the polygon fragments in these eigenvec-

tor directions, not just for the leaf cells, but for all the

octree cells encountered in the recursive polygon slic-

ing. Then we use the square of these summed projected

1 1

Fig. 2 Left: extinction in a slab of area 1 and infinitesimal
thickness ds, Right: inscattering in that slab.

areas to get the diagonal matrix for the quadratic form

in the eigenvector coordinate system, and transform it

into the world coordinate system using the matrix of

unit eigenvectors.

4 Computing extinction and inscattering

The microflake area per unit volume near a position x,

as projected in the viewing direction ωo, is

σt(x, ωo) =

∫
Ω

h(x, ωn)〈ωn, ωo〉dωn, (3)

where Ω is the unit sphere, the forshortening projection

factor 〈−,−〉 represents the non-negatively clamped dot

product if one sided flakes are being used, or the abso-

lute value of the dot product if double sided flakes are

being used, and ωo is actually the negative of the view-

ing ray direction, as in the usual convention for repre-
senting BRDFs. According to the reasoning in [8], this

σt(x, ωo) is the extinction coefficient, or volumetric at-

tenuation coefficient, expressing the fraction of flux in-

tercepted by the flakes per (infinitesimal) unit length.

Figure 2 (left) shows a slab of front face area 1 and

infinitesimal thickness ds, and thus with volume ds, a

sample of microflakes from the distribution of normals

h(x, ωn), and their projections on the face of the slab

closest to the viewer. The slab thickness ds is assumed

to be so small that the chance that the microflake pro-

jections overlap each other approaches zero. Therefore

sum of their projected areas is the slab’s opacity, ex-

pressed by multiplying equation (3) by the slab volume

ds to convert area per unit volume to area in the slab.

So the slab’s transparency is 1− σt(x, ω0)ds.

To compute the inscattering, let f(ωi, ωo;ωn) be the

BRDF of a microflake with normal ωn. Accounting for

both the foreshortening in the incident direction ωi (for

irradiance) and in the viewing direction ωo (for viewing

visibility), the inscattering per unit length along the
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viewing ray is

S(x, ωo) =∫
Ω

∫
Ω

h(ωn)f(ωi, ωo;ωn)〈ωn, ωi〉〈ωn, ωo〉L(x, ωi)dωndωi,

(4)

where L(x, ωi) is the incoming radiance at x coming

from direction ωi. See the right half of figure 2, where

the colors represent the microflakes’ reflected radiance

in direction ωo.

The quantities σt(x, ωo) and S(x, ωo) are used to

compute the volume rendering integral along the view-

ing ray in direction−ωo, by integrating this inscattering

contribution along the ray, as attenuated by the trans-

parency between each slab and the viewpoint E:

L(E,ωo) =

∫ D

0

exp

(
−
∫ s

0

(σt(x(t), ωo)dt

)
S(x(s), ωo)ds,

(5)

where x(t) = E − tωo is the arclength parametrization

of the ray leaving the viewpoint E in direction −ωo,
and D is the parameter at which this ray hits a hard

surface or exits the SVO data volume. See [8] for a

detailed derivation. As shown by the equations above,

the extinction and inscattering depend on the distribu-

tion of visible normals, due to the foreshortening factor

〈ωn, ωi〉. However the full geometric attenuation factor

accounting for shadowing and masking when consid-

ering surface microfacets is not present here, because

these effects are instead included in the volume atten-

uation calculations in equation (5) above, and in com-

puting similarly how much light from a distant source

reaches x and contributes to L(x, ωi) in equation (4).

As is usual in volume rendering, we numerically

compute the integral in equation (5) by marching along

the viewing ray through the octree, determining the

successive segments in which it intersects cells at the

level locally appropriate to its ray differential, and in-

crementally accumulating the transparency

T (s) = exp

(
−
∫ s

0

(σt(x(t), ωo)dt

)
(6)

and also the ray segment’s contribution to the radiance

arriving at E in equation (5).

We assume that h(x, ωn), and therefore σ(x, ωo) and

S(x, ωo), are constant in each cell, so we leave the lo-

cation x out of the equations below. If the ray segment

has length ∆s, the update for T should not just be

T = T ∗ (1−σt∆s), accounting for the unoccluded frac-

tion of the slab face in figure 2, because ∆s is not in-

finitesimal, and the projected microflakes can overlap,

1

Fig. 3 Mutually occluding microflakes in a slab of finite
thickness ∆s.

as shown in figure 3. It is more accurate to compute the

segment transparency integral

Tseg = exp

(
−
∫ ∆s

0

(σt(ωo)dt

)
= exp(−σt(ωo)∆s)

(7)

which accounts for this overlap. Then we use the up-

date T = T ∗ Tseg. Similarly, instead of incrementing

L(E,ωo) by T ∗ S(x, ωo) ∗∆s as is sometimes done in

volume rendering, it is more accurate to compute the

inscattering integral from the segment analytically, as

Lseg =

∫ ∆s

0

exp

(
−
∫ s

0

(σt(ωo)dt

)
S(ωo)ds

= S(ωo)

∫ ∆s

0

exp(−σt(ωo)s)ds

= S(ωo)(1− exp(−σt(ωo)∆s))/σt(ωo)
= (S(ωo)/σt(ωo))(1− Tseg).

(8)

The expression in the final line just above can be in-

terpreted in figure 3. Without accounting for overlap,

S(ωo)∆s is the summed radiance times projected area

of the microflakes, and σt(ωo)∆s is the summed pro-

jected area. So the fraction S(ωo)/σt(ωo) is the projected-

area-weighted average radiance of the microflakes. Since

the depth order for occlusion is random, this is also the

average radiance of the colored segments shown in fig-

ure 3 on the slab face. The area not covered by these

segments is Tseg, so the area that is covered is 1−Tseg.
Thus the inscattered radiance Lseg in equation (8) is the

average radiance times the area covered. The update to

L(E,ωo) in equation (5) to include this segment’s con-

tribution is L(E,ωo) = L(E,ωo) + T ∗ Lseg where T is

the accumulated transparency of all the previous seg-

ments, before being updated to include the current one.

Now we discuss how to compute σt(x, ωo) and S(x, ωo)

for each of the three methods for approximating h(x, ω)

in a cell. For method A), the distribution of normals is

a sum of weighted δ-functions, with weights cj , in di-
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rections ωj :

h(x, ω) =

k∑
j=1

cjδ(ω − ωj). (9)

Substituting into equation (3), the extinction is

σt(x, ωo) =

k∑
j=1

cj〈ωj , ωo〉. (10)

For a perfectly diffuse surface with albedo α and thus

diffuse BRDF α/π, and a small light source in direction

ωi whose radiance times subtended solid angle at x is

I, equation (4) for the inscattering gives

S(x, ωo) =
Iα

π

k∑
j=1

cj〈ωj , ωo〉〈ωj , ωi〉. (11)

Specular reflection can be handled similarly, using the

variance of the polygon fragment normals clustered with

each of the k representative normals, calculated when

constructing the octree, to determine the width and

maximum radiance of each specular peak.

For method B), the integral for the extinction coef-

ficient in equation (3) of the SH expansion for the mi-

croflake normal density times the clamped cosine can be

computed as a weighted sum of the spherical harmonic

basis functions evaluated at the viewing direction, ac-

cording to section 4 of [16]. (See equation (15) in the

Appendix below.) If the two clamped cosines in the

integral for the inscattering in equation (4) are both

expanded in spherical harmonics as in [16], this inte-

gral can be expressed as a weighed sum of triple prod-

uct integrals of spherical harmonic basis functions. (See

Appendix, equation (16).) Most of these triple product

integrals are zero for the higher orders, and we precom-

puted the rest and stored them in a sparse array. Jacob

et al. [11] also discussed the above method of comput-

ing the extinction coefficient from a spherical harmonic

representation, but not how to compute the inscatter-

ing integral.

For microfacet-generated mirror reflection, we need

to evaluate the spherical harmonic visible microfacet

normal density approximation 〈ω, ωo〉h(ω) at the half

angle direction ω = ωh = (ωi+ωo)/|ωi+ωo|, that spec-

ifies the microfacet normal which reflects light from di-

rection ωi into direction ωo, as in [17] and [18]. We must

multiply by the change of variables factor dωh/dωo =

1/(4〈ωh, ωi〉) as given in [19] and explained in the in-

troduction to chapter 7 of [20] and briefly in [21]. Since

〈ωh, ωo〉 = 〈ωh, ωi〉 these two factors cancel.

For method C), we use the routines in [22]. For the

projected microflake area in the viewing direction in

equation (3), we take the square root of the quadratic

form of squared projected areas, evaluated at the view-

ing direction. The perfect mirror microflake specular

reflection can be found from the microflake normal dis-

tribution evaluated at the half angle direction ωh as in

method B) above. This distribution is given by equa-

tions (24), (11), and (12) of [3]. The diffuse reflection is

more difficult, because, unlike methods A) and B), an

analytic expression for the integral in equation (4) is not

known, even for a point or directional light source. So

as proposed in [3], we instead sample the distribution

of visible normals (see the next section), and use the

diffuse BRDF for a flat surface with the resulting nor-

mal. This technique introduces noise, however, and is

only useful in a context where multiple ray samples per

pixel are already being used for other purpose like anti-

aliasing, depth of field, or global illumination. We may

also need to use it for the spherical harmonics method

B), if there are double-sided microflakes. (See section 6

below.)

5 Computing sample directions for global

illumination

To efficiently compute inscattered illumination from a

whole environment sphere Ω in equation (4), or the next

bounce direction in path tracing methods for global il-

lumination by Monte Carlo integration, once the Monte

Carlo volume rendering algorithm determines that vol-

ume scattering should take place (see [23]), we need to

importance sample the distribution of scattering direc-

tions ωi for a viewing ray or continuing path direction

−ωo. This involves first sampling a normal from the dis-

tribution of visible microfacet normals 〈ωo, ωn〉h(x, ωn),

or rather the normalized probability distribution pro-

portional to it, and then sampling the BRDF for a flat

microflake surface with this normal.

For method A), we generate a random number uni-

formly distributed in the interval [0, 1], use it with the

inverse of the cumulative distribution of the visible nor-

mal probabilities 〈ωj , ωo〉cj/
∑
〈ωj , ωo〉cj to chose sur-

face j with probability proportional to 〈ωj , ωo〉cj , and

then sample the BRDF for a surface with normal ωj .

For method B), we show at the end of the Appendix

that the importance of the incoming radiance from the

next diffuse bounce direction also has an SH represen-

tation, with coefficients computed from ωo and the SH

coefficients of the microflake normal distribution. Thus

we can use the algorithm of [24] for sampling spheri-

cal harmonics distributions. It divides the (φ, θ) range

of the unit sphere iteratively into quadrants as in a

quadtree, integrates the distribution over each quad-

rant (using precomputed tables), and uses a random
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number for the inverse cumulative distribution method

to choose a quadrant at each stage of the iteration.

One problem with this sampling algorithm is that

the best spherical harmonic fit of a non-negative func-

tion on the unit sphere can have some negative values,

due to ringing. In our implementation, quadrants with

negative integrals are given probability zero, and the

probabilities of the remaining quadrants are normalized

to add up to one. However, when negative lobes of the

SH function cause distortions in the distribution of our

samples by inappropriately decreasing the probability

of sampling the positive lobes in a quadrant, we resort

to rejection sampling, precomputing and saving in each

octree cell the maximum of its spherical harmonic fit-

ting function. The rejection test rejects samples with

negative function values, and produces directions with

probability proportional to positive function values.

For method C) we use the sampling algorithm in

section 1.6 of [22].

6 Double-sided microflakes

In our application, the vegetation leaf polygons are shaded

on both sides with the same color, as is the case for

the microflakes in [11]. For method A), we can take

advantage of this and use a smaller number k of rep-

resentatives of the microflake normals, by comparing

both a new normal n and its negative −n with all the

representatives when choosing the closest. Then, when

shading, we can use either the representative normal,

or its negative, whichever is front-facing.

For method B), we can conceptually use the δ-functions

with both n and −n when computing the spherical har-

monic representation, as in section 3. The basis func-

tions Ylm(n) are even functions of the unit vector n, i.e.

Ylm(−n) = Ylm(n), when l is even, and odd functions of

n, i.e. Ylm(−n) = −Ylm(n), when l is odd. Thus when

summing the contributions from n and −n, all terms

with odd l disappear, and only (bL/2c+1)(2bL/2c+1)

terms remain, which for large L is about half of the to-

tal (L+1)2. For order L = 4, there remain only 15 terms

instead of 25. This saves both space and computation

time. However, when equation (16) in the Appendix is

applied to the shading of a double-sided smooth sur-

face we get an effect like double-sided lighting (as if

from direction −ωi as well as ωi, see figure 10), be-

cause the reversed normal also contributes to the shad-

ing. To avoid this we can shade by sampling the visible

normal distribution, reversing the resulting normal if it

has a negative dot product with ω0, and then applying

the BRDF for a surface with this normal. This normal

sampling introduces noise, as with the shading for the

ellipsoid method. An alternative is to keep all (L+ 1)2

terms, and apply equation (16) twice, using the single-

sided clamped version of the 〈ωn, ωi〉 and 〈ωn, ωo〉 fac-

tors, and for the second time reversing both the viewing

and lighting directions, which is equivalent to reversing

the normal. On the other hand, the double sided light-

ing may actually be appropriate for vegetation leaves,

if diffuse transmission is considered, as well as diffuse

reflection.

Method C) naturally represents double-sided mi-

croflakes, since the ellipsoids are centrally symmetric,

and reflect from all sides.

7 Compression

In order to reduce the size of our SVO, we compress

the data inside each cell after octree construction and

dynamically decompress the requested values as render-

ing occurs. We use the Best Fit Normal [25] method to

compress normals, and a dictionary-based method to

compress other related floating point numbers.

Best Fit Normal compresses a 3-float normal (12

bytes) to 3 bytes, achieving a compression ratio of 4.

Essentially, this method assigns a normal to the best

fit voxel’s index within a voxel space of size 2563. The

trick is how to find the best fitting voxel for each unit

normal. To do this, instead of treating the normal as a

unit vector, we treat it as a ray with arbitrary length.

We start this ray at the center of the 2563 voxel space,

and then walk along it. For every voxel intersected by

the ray, we compute the distance from that voxel center

to the ray, and assign the index of the closest voxel to

the normal as its compressed form. The decompression

of such a form amounts to a subtraction and a normal-

ization.

Our dictionary-based compression scheme takes in a

set of floats, builds a dictionary, and assigns each float

to its closest entry in the dictionary. To build the dic-

tionary, we use an approximate k-means method [26]

for fast clustering, and extract N entries as specified

by the user. For a single float, the compression ratio is

then 32/dlogNe bits. Decompression is merely a lookup

in the dictionary. We use this method for color compo-

nents, and normal variance.

For compressing the 6 coefficients of the quadratic

form in method C) we use the suggestion of [3]. We

take the square root of the absolute value, give it the

sign of the original coefficient, and then convert it to a

16 bit half float [27]. For method A), we specify each

weighted representative normal as a scalar weight mul-

tiplying a unit normal vector, and use the Best Fit Nor-

mal method above for the unit normals. We use the half

float of the square root for the scalar weights and the
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polygons hard surfaces k-means, k = 3 SH, L = 2 SH, L = 4 ellipsoids

Fig. 4 Cottonwood tree, at 640 by 640 resolution, and 8 by 8 supersampling. From left to right: ground truth image from
original polygons, hard surface image from SVO, k-means with k = 3, SH with L = 2, SH with L = 4, and ellipsoidal microflakes.

polygons hard surfaces k-means, k = 3 SH, L = 2 SH, L = 4 ellipsoids

Fig. 5 Cottonwood tree, at 200 by 200 resolution, and no supersampling except for the ground truth image which is 8 by 8
supersampled. Top row from left to right: ground truth image from original polygons, hard surface image from SVO, k-means
with k = 3, SH with L = 2, SH with L = 4, and ellipsoidal microflakes. Bottom row: differences of the rightmost five images
in the top row and the leftmost ground truth image, magnified by a factor of five, with neutral gray representing zero.

variances, and also for the spherical harmonics coeffi-

cients for method B).

8 Results

We tested the methods described above on several tree

models, including a broad-leafed cottonwood tree and a

needle-leafed lodgepole pine. For the cottonwood “ground

truth” images, we ray traced the full polygonal model at

8 by 8 supersampling resolution. We also generated im-

ages by ray tracing in the SVO, using the hard surface

representation for the leaves, as well as for the trunks

and branches. Then we generated octrees and images

using the hard surface representation for the trunk and

branches, and ray tracing through the microflake vol-

ume density for the leaves, using the three approxima-

tions methods discussed above for the distribution of

microflake normals. The octrees had resolution 10243.

We tested the spherical harmonic method for both or-

der L = 2 with 9 basis functions and for order L = 4,

with 25 basis functions, and tested all methods at both

8 by 8 supersampling (with a correspondingly reduced

ray differential), and without supersampling, where the

summarization qualities of the SVO are more impor-

tant. Figure 4 shows the cottonwood tree in 640 by

640 pixel resolution images with 8 by 8 supersampling,

which used the lowest level leaf cells of the octree when

ray tracing. Note that the shading is washed out for

the L = 2 spherical harmonics, because the distribu-

tion of normals is too band limited. Figure 5 shows

non-supersampled images at 200 by 200 resolution, on

the same octrees as figure 4, where the much larger ray

differentials cause the higher level internal nodes of the

octree to be used. Both figures are without any shad-

ows. The second row of figure 5 shows the differences

between the SVO-based images in the first row and

the ground truth ray traced and supersampled polygon-

based image of the same resolution, multiplied by five.

For the lodgepole pine, we expanded the vertices of

the polylines defining the curved pine needles into reg-

ular hexagons, so that the needle segments were repre-

sented by approximate hexagonal prisms. This means

that the distribution of the normals to the six prism

faces for a single needle segment can be exactly rep-

resented by the k-means approximation with k = 3,

when vectors of exactly opposite directions are consid-

ered equivalent. The octrees had resolution 5123. Figure
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polygons hard surfaces k-means, k = 3 SH, L = 4 odd terms ellipsoids q

Fig. 6 Lodgepole pine tree, at 200 by 400 resolution. Top row from left to right: ground truth image from original polygons;
hard surface image from SVO; k-means microflakes with k = 3; spherical harmonics microflakes with L = 4 with all 25 terms,
and double-sided shading as in section 6; spherical harmonics microflakes with L = 4 with only the 15 odd order terms, shaded
by sampling from the microflake normal distribution; and ellipsoidal microflakes. Bottom row: differences of the rightmost five
images in the top row and the leftmost ground truth image, magnified by a factor of five.

6 shows 200 by 400 resolution images. At the left is a

ray-traced image of the polygonal model, at 40 by 40

supersampling, and the subsequent images are from the

SVO, using the different microflake normal distribution

approximations, with 2 by 2 supersampling. The second

row again shows differences.

Tables 1, 2, and 3 show the performance statistics

for generating the images in figures 4, 5, and 6 respec-

tively. The SVO sizes are in bytes, and the RMS errors

are for the 3 floating point color components in the

range from 0 to 1, including the sky and ground regions

with no error. Table 2 used the same octrees as table

1. The timings were done on an HP Z800 workstation

with 12 Intel Xeon X5660 2.88 GHz cores. The octree

construction was serial, but the ray tracing was done in

parallel using 10 cores, with the other 2 for task man-

agement and system calls. For the cottonwood tree, the

rendering times were per frame, and do not include ini-

tialization and loading the precomputed octree, while

for the lodgepole pine, these initialization and loading

times are included.

Figure 7 shows the cottonwood tree with shadows at

400 by 400 resolution, with 4 by 4 supersampling, ren-

Method SVO size RMS SVO tm. render

hard surface 1,062,142,164 .0449 7:24 17.87
k-means 2,468,438,261 .0450 3:44 20.05

SH: L = 2 2,012,479,768 .0454 8:13 45.19
SH: L = 4 2,906,925,160 .0442 8:34 146.64
ellipsoidal 2,347,893,040 .0451 9:57 30.07

Table 1 Statistics for cottonwood tree images at 640 by 640
resolution, with 8 by 8 supersampling. The last two columns
show SVO construction time, in minutes:seconds, and render-
ing time, in seconds.

Method 64 RMS 64 render 1 RMS 1 render

hard surface .0449 1.805 .0857 0.097
k-means .0449 2.036 .0858 0.096

SH: L = 2 .0464 4.531 .0640 0.133
SH: L = 4 .0464 14.336 .0633 0.313
ellipsoidal .0464 3.150 .0670 0.105

Table 2 Statistics for cottonwood tree at 200 by 200 reso-
lution. RMS errors with the ray traced polygonal model and
rendering times in seconds are shown for 64 samples per pixel,
and 1 sample per pixel.

dered from a 5123 SVO using the k-means method A)

with k = 3. The left hand image used ray traced shad-

ows, and took 346.2 seconds to render. For the right
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Method SVO size RMS SVO tm. render

hard surface 123,734,707 .067 13:54 0.48
k-means 190,884,125 .056 16:54 1.16

SH: 25 terms 201,329,829 .050 15:49 1.58
SH: 15 terms 180,358,269 .062 16:04 1.42

ellipsoidal 178,261,368 .057 34:29 1.97

Table 3 Statistics for lodgepole pine at 200 by 400 resolu-
tion. The last two columns show SVO construction time, in
minutes:seconds, and rendering time, in seconds.

hand image, we first propagated the illumination into

the leaf cells of the SVO by tracing a grid of 2068 by

1462 rays from the light source through the octree, de-

positing in each intersected cell the ray segment length

and the length-weighted attenuated flux it carried. Af-

ter all rays were propagated, we divided the accumu-

lated flux in each leaf cell by the accumulated length,

and averaged this illumination up the octree hierar-

chy. This illumination precomputation took 13.6 sec-

onds, and then the rendering took 60.1 seconds. The

flux propagation was done in parallel, by dividing the

grid of rays up into square subregions indexed by col-

umn i and row j, and doing four passes, with pass k

including only the squares with (i mod 2) + 2(j mod

2) = k. Squares were assigned to different threads, and

since the squares in each pass were well separated, there

was no hazard from two threads attempting to simul-

taneously add to the flux or length in the same octree

cell.

Fig. 7 Cottonwood tree with shadows. Left: by ray tracing
from each shaded point, and right: precomputed shadows.

Figure 1 shows a forest of 218 trees of various species,

rendered by path tracing. The next direction for each

Method SVO size Compr. size polygons RMS Compr. RMS Constr. tm. render tm. Compr. rend.

hard surface 165,151,806 64,001,340 0.1293 0.0196 457 sec. 3.02 sec. 4.76 sec.
k-means 410,912,420 108,682,498 0.1126 0.0061 596 sec. 9.63 sec. 86.3 sec.

SH: 25 terms 432,539,169 166,440,279 0.0927 0.0467 568 sec. 21.1 sec. 147.9 sec.
ellipsoidal 388,167,513 84,975,047 0.0976 0.0185 1088 sec. 21.1 sec. 36.1 sec

Table 4 Statistics for compression. Construction time includes SVO construction, precomputed illumination, and compression.

path was chosen by sampling a surface normal from the

spherical harmonics microflake distribution using only

the 15 even terms up to L = 4, reversing the normal if it

was not facing the viewer, and then sampling from the

diffuse BRDF with that normal. Please see the supple-

mental material videos showing path traced 360 frame

cycles with the camera rotating around the center of

this forest, using the various methods discussed in this

paper, and also a camera dolly showing smooth transi-

tion between octree levels.

Figure 8 shows a path traced 500 by 500 image of

a beech tree with double-sided microflakes from an SH

representation with L = 4. The left hand image includes

both the diffuse reflection and the diffuse transmission,

while the right hand image includes only the diffuse

transmission, to show its contribution. The main visi-

ble effect of the path tracing is the illumination from

the sky, particularly evident in the shadows. The sup-

plementary material also includes a path traced video

with the camera rotating around this tree.

Fig. 8 Path traced beech tree. Left: reflection plus transmis-
sion, Right: transmission only.

Figure 9 shows images of a head model with 60,000

hairs, each represented by a polygonal quad mesh on a

curved cylinder following a Bezier curve, with 25 seg-

ments along the curve and 12 around the circular cross

section. They are rendered at 250 by 250 resolution,

with 6 by 6 supersamples except for the left hand ground

truth image, in which the original polygonal represen-

tation was ray traced at 20 by 20 supersamples. The

polygon mesh file was 1,355,638,498 bytes. The images

in the top row were rendered from uncompressed oc-

trees. Table 4 gives the octree sizes for these images,

and the RMS errors to ground truth and from com-
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pression. The construction and rendering times shown

in Table 4 were on a 4 core machine. The construction

times include precomputing the illumination, and com-

pression, and the compressed rendering times in the last

column include decompression. The octree resolution

was only 2563 so that each octree cell intersected mul-

tiple hairs, stressing the both the summarization ability

of the different representation methods, and also their

compression accuracy. Moon et al. [28] also used spheri-

cal harmonics for rendering hair, but used them to store

the incoming multiple scattered radiance at each cell, as

computed from a Monte Carlo simulation, rather than

to store the distribution of microflake normals.

Figure 10 shows a sphere, rendered as a hard sur-

face by adjusting the extinction and inscattering com-

putations, at the first non-empty cell the viewing ray

encounters, to represent a completely opaque surface

with the probability distribution of normals given by

the approximated h(x, ωn). The hard surface and k-

means method agree with the “ground truth” image

ray traced from the polygonal model. The spherical

harmonics method shows a main highlight that is too

broad, and also a spurious highlight ring near the pro-

file, caused by a positive ringing lobe in the SH fit,

and also by the effect of “double-sided lighting” from

the double-sided microflakes. This spurious highlight is

mostly removed by the precomputed shadows. The el-

lipsoidal microflake method is more effective, but must

still broaden the surface normal distribution somewhat,

because an almost flat ellipsoid generates floating point

exceptions or numerical problems in the calculations,

and cannot be used. Thus the shadow terminator is

softer than in the ground truth image.

9 Discussion

Bruneton and Neyret [29] survey methods of prefiltering

surface properties, specifically discussing distributions

of microfacet normals in their section 3, and a more

general classification of prefiltering methods into three

classes in their section 7. In terms of that classifica-

tion, our method A) using the variance is a spanning

set method, our method B) is a basis function method,

and our method C) appears to be a moment method,

like those of Olano et al. [15] and [30]. However, the

ellipsoids of [3] represent projected microflake area, in-

stead of the unprojected area weighted normals in [15].

As mentioned above, this means that the coefficients do

not add linearly when the distributions of child cells are

combined into their parent cell. On the other hand, the

3D covariance method of [15] gives the same informa-

tion as our spherical harmonic method with L = 2. In

general, since the spherical harmonics of order up to L

are a basis for the polynomials in x, y, and z on the unit

sphere of degree up to L, our method B) is equivalent

to the moment method of [29].

For the cottonwood tree at one sample per pixel and

200 by 200 resolution, simulating a distant view, the L

= 4 spherical harmonics method has lowest error, al-

though it requires most processing time. However, this

test puts the ellipsoid method at a disadvantage, since

a single sampled normal per pixel, required because

there is no analytic integral for the diffuse reflectance

from this distribution, introduces a lot of noise. For the

lodgepole pine tree, we used 2 by 2 supersampling, and

the noise in the ellipsoid method is less. For this model,

the SH method with all 25 terms up to L = 4 had the

least RMS error, but its SVO used the most storage.

For the top left image in figure 6, the optimized Em-

bree ray tracer, running in parallel on the same 12 core

machine, took 12.42 seconds to create its acceleration

structure and ray trace the 200 by 400 image at 40 by 40

supersamples per pixel. Thus the times quoted in table

3 are not a significant speed improvement. However, the

acceleration structure for ray tracing the scene in figure

1 with Embree could not fit in memory. The model for

figure 1 was in fact created from rotated and translated

copies of the same four trees, but if every tree were dif-

ferent, its data size would be unmanageable, while even

the uncompressed SVO sizes are practical for rendering,

varying from 1,670,384,307 bytes for the hard surfaces

to 2,717,912,229 bytes for the 25 SH terms up to L =

4, at 10243 voxel resolution.

The bottom row of difference images in Figure 9 and

the RMS errors from Table 4 show that the compression

does not introduce much error. The top row of images

show visible artifacts from the SVO methods, particu-

larly in the highlights. When many hairs are in an oc-

tree cell, the single average normal used in the hard sur-

face method cannot adequately represent them. The SH

normals are better for diffuse shading, but inadequate

to represent the highlights, because of the band limit-

ing effect of a practical maximum order L. The k-means

method gives discontinuous shading unless the starting

angular phase for the 12 facets around the cylinder is

chosen randomly per hair, as was done for figure 9, so

that there are no preferred representative directions,

but then the highlights are noisy. As expected, since

the distribution of normals of a long thin ellipsoid is

a good approximation to that of coherently oriented

hairs, the ellipsoidal method performs best in this case.

The band limiting effect of the SH approximation

makes the highlight too large in figure 10 as well as

in figure 9. The SH method performs better for wider,

more general distributions, where concentrated high-

lights do not occur. The k-means method would require
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polygons hard surfaces k-means, k = 3 SH, L = 4 ellipsoids

Fig. 9 Head with hair: Top row from left to right: ground truth image ray traced from the polygonal model, hard surfaces,
k-means with k = 3, SH with L = 4, and ellipsoidal microflakes. Middle row: differences between the image in the top row
and the ground truth image on the left, scaled by a factor of 5, with zero as the neutral gray in the background. Bottom row:
differences between the image rendered from a compressed octree and the corresponding image in the top row, scaled by 5.

polygons hard surfaces k-means, k = 3 SH, L = 4 SH, shadows ellipsoids

Fig. 10 From left to right: a sphere rendered from polygons, hard surfaces, k-means with k = 3, spherical harmonics with L
= 4 and only even-ordered terms (showing the effects of double-sided microflakes), spherical harmonics with L = 4 and only
even-ordered terms with precomputed shadows to suppress the spurious highlights, and ellipsoidal microflakes.

more representatives to handle general distributions.

When the variance is taken into account, it is similar

to a gaussian mixture model. The iterative Expecta-

tion Maximization method of fitting a gaussian mixture

model might give better approximations for the same

data size, but it would take much longer than the k-

means method. Table 5 summarizes the suitability of

the three methods for different sorts of applications.

Publications [1] and [31] consider microfacet height

field surface models where the color is correlated with

the height, and can account for the masking effects re-

lated to this correlation during rendering. None of the

volume microflake models we consider can account for

this sort of volume masking, because we assume that

the summarized microflake properties are homogeneous

within each octree cell.

10 Appendix

In this appendix we give some formulas for the spheri-

cal harmonics calculations discussed above. Good refer-

ences for the mathematics of spherical harmonics as ap-

plied to computer graphics are [32] and [33]. Sloan [32]

gives simple formulas for the Ylm(ω) in the form of poly-
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distribution type k-means SH ellipsoids

smooth surface + -
one narrow peak + - +
one wide peak + +
hair cylinders e +
many peaks e e -

general e e -

Table 5 The suitability of the three approximation methods
for different sorts of distributions of microflake normals: +
means suitable, - means unsuitable, a blank means suitable,
but not the best, and e means could work with enough terms.

nomials of degree l in the x, y, and z coordinates of the

unit vector ω, which we used in our implementation.

To compute the extinction integral in equation (3)

using an h(ω) of the form of equation (1), we expand the

non-negatively clamped cosine of θ, A(θ), into spherical

harmonics. Since this function is independent of φ, all

the coefficients with m 6= 0 are zero so we get just the

“zonal” harmonics expansion

A(θ, φ) ≈
L∑
l=0

Al0Yl0(θ, φ) (12)

where, by equation (2),

Al0 = 2π

∫ π/2

0

Yl0(θ, φ) cosθ sinθ dθ dφ. (13)

Ramamoorthi and Hanrahan [16] (please see the cor-

rection of their equation (19) at the bottom of the web

page http: //cseweb.ucsd.edu/ravir/papers/invlamb/)

give the formula for the coefficients Al0, which are zero

for odd l > 1, and decrease rapidly for increasing even

l. We have used only the first few values A00 =
√
π/2,

A10 =
√
π/3, A20 =

√
5π/8, A30 = 0, and A40 =

−
√
π/16.

This zonal harmonic expansion is only useful for

evaluating equation (3) if ωo is at the north pole of

the unit sphere. For other directions of ωo, one must

rotate this zonal harmonic expansion so that its axis of

symmetry is along the direction ωo. This is simpler for

zonal harmonics than for general spherical harmonics.

According to [16] the result of rotating the expansion

in equation (12) to make the axis of symmetry lie in

the direction ωo = (θo, φo) is

RθoφoA(θ, φ) ≈
L∑
l=0

l∑
m=−l

Ylm(θo, φo)

√
4π

2l + 1
Al0Ylm(θ, φ). (14)

Thus, if equation (1) is the spherical harmonic ex-

pansion of the microflake normal density h(ω), by equa-

tion (3) and the orthonormality of the SH basis func-

tions,

σt(x, θo, φo) ≈
L∑
l=0

l∑
m=−l

Ylm(θo, φo)

√
4π

2l + 1
Al0hlm.

(15)

The inscattering integral in equation (4) contains

the clamped cosine 〈ωn, ωi〉 as well as 〈ωn, ωo〉, so if

〈ωn, ωi〉 is also expanded in spherical harmonics as in

equation (14), we get, for the perfectly diffuse reflection

of a small light source from direction ωi of radiance

times solid angle equal to I,

S(ωo)

=

∫
Ω

∫
Ω

h(ωn)
α

π
〈ωn, ωi〉〈ωn, ωo〉L(ωi)dωndωi

=
Iα

π

∫ 2π

0

∫ π

0

h(θ, φ)RθiφiA(θ, φ)RθoφoA(θ, φ) sinθdθdφ

≈ Iα

π

∫ 2π

0

∫ π

0

L∑
l=0

l∑
m=−l

hlmYlm(θ, φ)

L∑
l′=0

l′∑
m′=−l′

Yl′m′(θo, φo)

√
4π

2l′ + 1
Al′0Yl′m′(θ, φ)

L∑
l′′=0

l′′∑
m′′=−l′′

Yl′′m′′(θi, φi)

√
4π

2l′′ + 1
Al′′0Yl′′m′′(θ, φ) sinθdθdφ

=
Iα

π

L∑
l=0

l∑
m=−l

hlm

L∑
l′=0

l′∑
m′=−l′

Yl′m′(θo, φo)

√
4π

2l′ + 1

Al′0

L∑
l′′=0

l′′∑
m′=−l′′

Yl′′m′′(θi, φi)

√
4π

2l′′ + 1
Al′′0Tlml′m′l′′m′′

(16)

where Tlml′m′l′′m′′ is the “triple product integral”

Tlml′m′l′′m′′ =∫ 2π

0

∫ π

0

Ylm(θ, φ)Yl′m′(θ, φ)Yl′′m′′(θ, φ) sinθ dθ dφ.

(17)
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For order L = 4, the potential number of triple

product integrals is 253 = 15,625, not accounting for

symmetries in the indices, but only 1,158 of them are

non-zero, and these are precomputed and stored in a

sparse table. In fact, since A30 = 0, only 605 terms are

actually included in the sum in equation (16), and if

the microflakes are double-sided, and we approximate

|cos(θ)| by A(θ, φ) +A(−θ, φ), all terms with l′ = 1 or

l′′ = 1 also disappear, and only 585 terms remain.

Note that if ωo = (θo, φo) is fixed, grouping the

terms and factors from h(ωn)〈ωn, ωo〉 in the last form in

equation (16) into the large parentheses below gives a

spherical harmonic expansion in the direction variable

ωi = (θi, φi).

S(ωo) =

L∑
l′′=0

l′′∑
m′′=−l′′

(
Iα

π

L∑
l=0

l∑
m=−l

hlm

L∑
l′=0

l′∑
m′=−l′

Yl′m′(θo, φo)√
4π

2l′ + 1
Al′0

√
4π

2l′′ + 1
Al′′0Tlml′m′l′′m′′

)
Yl′′m′′(θi, φi)

(18)

Thus it can be importance sampled for path tracing us-

ing the techniques of [24], or by rejection sampling. Note

also from this form that once the basis function coeffi-

cients in the large parentheses have been computed, the

inscattering of illumination from multiple light sources

can be computed with only (L + 1)2 multiplications

and adds for each. For a light source “at infinity” with

constant ωi, a different grouping of the terms involving

instead the factors 〈ωn, ωi〉〈ωn, ωo〉 can be computed

once per viewing ray that hits microflakes, allowing only
(L+ 1)2 multiplications per octree cell (9.2 seconds for

the image in figure 9 instead of 21.1). For finite dis-

tance light sources, using more storage, the inscattering

and the extinction coefficient can be computed once per

voxel as first needed, and saved for subsequent viewing

rays crossing the same voxel (8.4 seconds for the image

in figure 9).
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