Skip to main content

Advertisement

Log in

Data-driven modeling and animation of outdoor trees through interactive approach

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Computer animation of trees has widespread applications in the fields of film production, video games and virtual reality. Physics-based methods are feasible solutions to achieve good approximations of tree movements. However, realistically animating a specific tree in the real world remains a challenge since physics-based methods rely on dynamic properties that are difficult to measure. In this paper, we present a low-cost interactive approach to model and animate outdoor trees from photographs and videos, which can be captured using a smartphone or handheld camera. An interactive editing approach is proposed to reconstruct detailed branches from photographs by considering an epipolar constraint. To track the motions of branches and leaves, a semi-automatic tracking method is presented to allow the user to interactively correct mis-tracked features. Then, the physical parameters of branches and leaves are estimated using a fast Fourier transform, and these properties are applied to a simplified physics-based model to generate animations of trees with various external forces. We compare the animation results with reference videos on several examples and demonstrate that our approach can achieve realistic tree animation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., Kang, S.B.: Image-based plant modeling. ACM Trans. Graph. 25(3), 599–604 (2006)

    Article  Google Scholar 

  2. Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. ACM Trans. Graph. 26(3), 87 (2007)

    Article  Google Scholar 

  3. Livny, Y., Pirk, S., Cheng, Z., Yan, F., Deussen, O., Cohen-Or, D., Chen, B.: Texture-lobes for tree modelling. ACM Trans. Graph. 30(4), 53:1–53:10 (2011)

    Article  Google Scholar 

  4. Akagi, Y., Kitajima, K.: Computer animation of swaying trees based on physical simulation. Comput. Graph. 30(4), 529–539 (2006)

    Article  Google Scholar 

  5. Diener, J., Rodriguez, M., Baboud, L., Reveret, L.: Wind projection basis for real-time animation of trees. Comput. Graph. Forum 28(2), 533–540 (2009)

  6. Habel, R., Kusternig, A., Wimmer, M.: Physically guided animation of trees. Comput. Graph. Forum 28(2), 523–532 (2009)

    Article  Google Scholar 

  7. Hu, S., Chiba, N., He, D.: Realistic animation of interactive trees. Vis. Comput. 28(6–8), 859–868 (2012)

    Article  Google Scholar 

  8. Pirk, S., Niese, T., Hädrich, T., Benes, B., Deussen, O.: Windy trees: computing stress response for developmental tree models. ACM Trans. Graph. 33(6), 1–11 (2014)

    Article  Google Scholar 

  9. Diener, J., Reveret, L., Fiume, E.: Hierarchical retargetting of 2d motion fields to the animation of 3d plant models. In: Proceedings of the 2006 ACM SCA, pp. 187–195. Switzerland (2006)

  10. Li, C., Deussen, O., Song, Y.-Z., Willis, P., Hall, P.: Modeling and generating moving trees from video. ACM Trans. Graph. 30(6), 127 (2011)

    Article  Google Scholar 

  11. James, K.R., Haritos, N., Ades, P.K.: Mechanical stability of trees under dynamic loads. Am. J. Bot. 93(10), 1522–1530 (2006)

    Article  Google Scholar 

  12. Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants and Organics. Springer, New York (2005)

    Google Scholar 

  13. Shinya, M., Fournier, A.: Stochastic motion–motion under the influence of wind. Comput. Graph. Forum 11(3), 119–128 (1992)

    Article  MATH  Google Scholar 

  14. Stam, J.: Stochastic dynamics: simulating the effects of turbulence on flexible structures. Comput. Graph. Forum 16(3), 159–164 (1997)

    Article  Google Scholar 

  15. Pirk, S., Niese, T., Deussen, O., Neubert, B.: Capturing and animating the morphogenesis of polygonal tree models. ACM Trans. Graph. 31(6), 169:1–169:10 (2012)

    Article  Google Scholar 

  16. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. SIGGRAPH ’96, pp. 11–20. New York, USA, (1996)

  17. Sakaguchi, T., Ohya, J.: Modeling and animation of botanical trees for interactive virtual environments. In: Proceedings of the ACM Symposium on VRST, pp. 139–146. New York, USA (1999)

  18. Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., Chiba, N.: A hybrid method for real-time animation of trees swaying in wind fields. Vis. Comput. 20(10), 613–623 (2004)

    Article  Google Scholar 

  19. Sun, M., Jepson, D.A., Fiume, E.: Video input driven animation (vida). In: 9th IEEE international conference on computer vision, pp. 96–103. Nice, France, IEEE (2003)

  20. Long, J., Porter, B., Jones, M.: Animation of trees in wind using sparse motion capture data. Vis. Comput. 31(3), 325–339 (2015)

    Article  Google Scholar 

  21. Wang, B., Wu, L., Yin, K.K., Ascher, U., Liu, L., Huang, H.: Deformation capture and modeling of soft objects. ACM Trans. Graph. 34(4), 1–12 (2015)

    Google Scholar 

  22. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. ACM Trans. Graph. 25(3), 835–846 (2006)

    Article  Google Scholar 

  23. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  24. Py, C., de Langre, E., Moulia, B.: A frequency lock-in mechanism in the interaction between wind and crop canopies. J. Fluid Mech. 568, 425–449 (2006)

    Article  MATH  Google Scholar 

  25. Shi, J., Tomasi, C.: Good features to track. In: 1994 Proceedings of IEEE CVPR, pp. 593–600. Jun (1994)

  26. Bouguet, J.-Y.: Pyramidal implementation of the lucas kanade feature tracker. Intel Corporation, Microprocessor Research Labs (2000)

  27. Olmos, B.A., Roesset, J.M.: Evaluation of the half-power bandwidth method to estimate damping in systems without real modes. Earthq. Eng. Struct. Dyn. 39(14), 1671–1686 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Hironori Yoshida, Seung-tak Noh and the anonymous reviewers. This work was supported by NSFC [61303124], National 863 Plan [2013AA102304 02] and NSBR Plan of Shaanxi [2015JQ6250].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 53834 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Zhang, Z., Xie, H. et al. Data-driven modeling and animation of outdoor trees through interactive approach. Vis Comput 33, 1017–1027 (2017). https://doi.org/10.1007/s00371-017-1377-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1377-6

Keywords

Navigation