Skip to main content
Log in

Rotation-invariant object detection using Sector-ring HOG and boosted random ferns

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The histogram of oriented gradients (HOG) is widely used for image description and has proven to be very effective. In some practical applications that lack an assumption of the object’s orientation, rotation-invariant detection is of vital significance. To address this problem, this paper presents a new visual feature, Sector-ring HOG (SRHOG), which is obtained by improving the gradient binning and spatial binning based on HOG. The new feature can convert planar image rotations into cyclic shifts of the final descriptor and thereby facilitate rotated object detection. After modifying boosted random ferns in SRHOG feature domain, we further propose two strategies for rotation-invariant object detection: one depends completely on the new feature’s characteristic, and the other introduces an orientation estimation step. The former is more suitable to ‘finding objects’ and the latter can provide the higher orientation estimation accuracy. Both the use of supervised learning and working in the gradient space make our approaches effective and robust. We show these properties by thorough testing on the public Freestyle Motocross dataset and our dataset for victim detection in post-disaster rescue efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cai, N., Su, Z., Lin, Z., Wang, H., Yang, Z., Ling, W.K.B.: Blind inpainting using the fully convolutional neural network. Vis. Comput. (2015). doi:10.1007/s00371-015-1190-z

  2. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

  3. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. arXiv preprint arXiv:1703.06870, (2017)

  4. Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(12), 7405–7415 (2016)

    Article  Google Scholar 

  5. Cheng, G., Zhou, P., Han, J.: Rifd-cnn: rotation-invariant and fisher discriminative convolutional neural networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2884–2893 (2016)

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE, vol. 1, pp. 886–893 (2005)

  7. Murtza, I., Abdullah, D., Khan, A., Arif, M., Mirza, S.M.: Cortex-inspired multilayer hierarchy based object detection system using phog descriptors and ensemble classification. Vis. Comput. 33(1), 99–112 (2017)

    Article  Google Scholar 

  8. Kong, Y., Dong, W., Mei, X., Zhang, X., Paul, J.C.: Simlocator: robust locator of similar objects in images. Vis. Comput. 29(9), 861–870 (2013)

    Article  Google Scholar 

  9. Liu, K., Skibbe, H., Schmidt, T., Blein, T., Palme, K., Brox, T., Ronneberger, O.: Rotation-invariant hog descriptors using fourier analysis in polar and spherical coordinates. Int. J. Comput. Vis. 106(3), 342–364 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Villamizar, M., Moreno-Noguer, F., Andrade-Cetto, J., Sanfeliu, A.: Efficient rotation invariant object detection using boosted random ferns. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 1038–1045 (2010)

  11. David, G.L.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Andriluka, M., Schnitzspan, P., Meyer, J., Kohlbrecher, S., Petersen, K., Von Stryk, O., Roth, S., Schiele, B.: Vision based victim detection from unmanned aerial vehicles. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1740–1747 (2010)

  13. Huang, C., Ai, H., Li, Y., Lao, S.: Vector boosting for rotation invariant multi-view face detection. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1. IEEE, vol. 1, pp. 446–453 (2005)

  14. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 854–869 (2007)

    Article  Google Scholar 

  15. Vedaldi, A., Blaschko, M., Zisserman, A.: Learning equivariant structured output svm regressors. In: 2011 IEEE International Conference on Computer Vision. IEEE, pp. 959–966 (2011)

  16. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  17. Zhang, W., Sun, X., Fu, K., Wang, C., Wang, H.: Object detection in high-resolution remote sensing images using rotation invariant parts based model. IEEE Geosci. Remote Sens. Lett. 11(1), 74–78 (2014)

    Article  Google Scholar 

  18. Gauglitz, S., Turk, M., Höllerer, T.: Improving keypoint orientation assignment. In: BMVC, pp. 1–11 (2011)

  19. Skibbe, H., Reisert, M.: Circular fourier-hog features for rotation invariant object detection in biomedical images. In: ISBI, pp. 450–453 (2012)

  20. Zhao, G., Ahonen, T., Matas, J., Pietikainen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Trans. Image Process. 21(4), 1465–1477 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qi, X., Xiao, R., Li, C.G., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2199–2213 (2014)

    Article  Google Scholar 

  22. Takacs, G., Chandrasekhar, V., Tsai, S., Chen, D., Grzeszczuk, R., Girod, B.: Unified real-time tracking and recognition with rotation-invariant fast features. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 934–941 (2010)

  23. Takacs, G., Chandrasekhar, V., Tsai, S.S., Chen, D., Grzeszczuk, R., Girod, B.: Fast computation of rotation-invariant image features by an approximate radial gradient transform. IEEE Trans. Image Process. 22(8), 2970–2982 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006)

    Article  Google Scholar 

  25. Ozuysal, M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 1–8 (2007)

  26. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

  27. Liu, K., Wang, Q., Driever, W., Ronneberger, O.: 2d/3d rotation-invariant detection using equivariant filters and kernel weighted mapping. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 917–924 (2012)

  28. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. IEEE, vol. 2, pp. II-264 (2003)

Download references

Acknowledgements

This work was supported by Science & Technology Pillar Program of Tianjin, China (16YFZCSF00590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinggong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wu, H., Su, W. et al. Rotation-invariant object detection using Sector-ring HOG and boosted random ferns. Vis Comput 34, 707–719 (2018). https://doi.org/10.1007/s00371-017-1408-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1408-3

Keywords

Navigation