Skip to main content
Log in

An interpolation method for strong barrel lens distortion

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose an interpolation method considering strong barrel distortion of a fisheye lens using nearest pixels on a corrected image. The correction of barrel distortion comprises coordinate transformation and interpolation, and this paper focuses on interpolation. The proposed interpolation method uses nearest coordinates on a corrected image rather than on a distorted image, unlike existing techniques. The increased computational complexity of the proposed interpolation method is alleviated by using look-up table (LUT)-based optimization. Experimental results show that both subjective and objective image qualities are improved with marginal execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wei, J., Li, C.F., Hu, S.M., Martin, R.R., Tai, C.L.: Fisheye video correction. IEEE Trans. Vis. Comput. Graph. 18(10), 1771–1783 (2012)

    Article  Google Scholar 

  2. Kim, H., Chae, E., Jo, G., Paik, J.: Fisheye lens-based surveillance camera for wide field-of-view monitoring. In: 2015 IEEE International Conference on Consumer Electronics (ICCE), Institute of Electrical and Electronics Engineers (IEEE) (2015)

  3. Rao, A.S., Gubbi, J., Marusic, S., Palaniswami, M.: Estimation of crowd density by clustering motion cues. Vis. Comput. 31(11), 1533–1552 (2014)

    Article  Google Scholar 

  4. Kanatani, K.: Calibration of ultrawide fisheye lens cameras by eigenvalue minimization. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 813–822 (2013)

    Article  Google Scholar 

  5. Hughes, C., Glavin, M., Jones, E., Denny, P.: Wide-angle camera technology for automotive applications: a review. IET Intell. Transp. Syst. 3(1), 19 (2009)

    Article  Google Scholar 

  6. Shih, S.E., Tsai, W.H.: A convenient vision-based system for automatic detection of parking spaces in indoor parking lots using wide-angle cameras. IEEE Trans. Veh. Technol. 63(6), 2521–2532 (2014)

    Article  Google Scholar 

  7. Hui, G., Qiushui, Y., Min, F.: A study of camera calibration in the vision system of soccer robots. In: 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA), Institute of Electrical and Electronics Engineers (IEEE) (2014)

  8. Chen, S.L., Huang, H.Y., Luo, C.H.: Time multiplexed VLSI architecture for real-time barrel distortion correction in video-endoscopic images. IEEE Trans. Circuits Syst. Video Technol. 21(11), 1612–1621 (2011)

    Article  Google Scholar 

  9. Jacobson, R., Ray, S., Attridge, G.G., Axford, N.: Manual of Photography (Media Manual). Focal Press, Oxford (2000)

    Google Scholar 

  10. Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omnidirectional cameras. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Institute of Electrical and Electronics Engineers (IEEE) (2006)

  11. Zhu, H., Xu, X., Wang, X., Zhou, J.: Using vanishing points to estimate parameters of fisheye camera. IET Comput. Vis. 7(5), 362–372 (2013)

    Article  Google Scholar 

  12. Johnson, K.B., Smith, P.W., Abidi, M.A.: Quadric surface projection model for wide-angle lenses. In: Casasent, D.P., (ed.) Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision, SPIE-Intl Soc Optical Eng (Oct. 1998)

  13. Zhang, B., Wang, J., Li, J., Wang, X.: Fisheye lens distortion correction based on an ellipsoidal function model. In: 2015 International Conference on Industrial Informatics—Computing Technology, Intelligent Technology, Industrial Information Integration, Institute of Electrical and Electronics Engineers (IEEE) (2015)

  14. Schneider, D., Schwalbe, E., Maas, H.G.: Validation of geometric models for fisheye lenses. ISPRS J. Photogram. Rem. Sens. 64(3), 259–266 (2009)

    Article  Google Scholar 

  15. Chen, Y., Ip, H.H.: Single view metrology of wide-angle lens images. Vis. Comput. 22(7), 445–455 (2006)

    Article  Google Scholar 

  16. Lehmann, T., Gonner, C., Spitzer, K.: Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18(11), 1049–1075 (1999)

    Article  Google Scholar 

  17. Daloukas, K., Antonopoulos, C.D., Bellas, N., Chai, S.M.: Fisheye lens distortion correction on multicore and hardware accelerator platforms. In: 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), Institute of Electrical and Electronics Engineers (IEEE) (2010)

  18. Han, J.: Fisheye Image Correction and Low-Power Scaler Design. Master’s thesis, Kwangwoon University (2010)

  19. Lee, Y.: Near Pixels Fisheye Lens Image Correction Based on Near Pixels of a Corrected Image. Master’s thesis, Kwoangwoon University (2011)

  20. Choi, C., Yi, J.: An interpolation method for a barrel distortion using nearest pixels on a corrected image. J. Inst. Electron. Inf. Eng. 50(7), 181–190 (2013)

    Google Scholar 

  21. Foley, J.D., van Dam, A., Feiner, S.K.: Computer Graphics. Addison Wesley, Reading (2013)

    MATH  Google Scholar 

  22. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  Google Scholar 

  23. Franzen, R.: Kodak Lossless True Color Image Suite. http://r0k.us/graphics/kodak/ (2013)

  24. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The present Research has been conducted by the Research Grant of Kwangwoon University in 2016. This work was supported by the Industrial Strategic Technology Development Program (10047664, Automatic power model generation software development for low power designs with more than 300 times faster power analysis speed and less than 20% error rate on average with respect to the gate-level power models) funded by the Ministry of Trade, industry & Energy (MI, Korea). This work was supported by IDEC(EDA Tool, MPW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonhwan Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, C., Lee, H. & Yi, J. An interpolation method for strong barrel lens distortion. Vis Comput 34, 1479–1491 (2018). https://doi.org/10.1007/s00371-017-1414-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1414-5

Keywords

Navigation