Skip to main content
Log in

Multi-scale counting and difference representation for texture classification

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Multi-scale analysis has been widely used for constructing texture descriptors by modeling the coefficients in transformed domains. However, the resulting descriptors are not robust to the rotated textures when performing texture classification. To alleviate this problem, we in this paper propose a multi-scale counting and difference representation (CDR) of image textures for texture classification. Particularly, we first extract a single-scale CDR feature consisting of the local counting vector (LCV) and the differential excitation vector (DEV). The LCV is established to capture different types of textural structures using the discrete local counting projection, while the DEV is used to describe the difference information of textures in accordance with the differential excitation projection. Finally, the multi-scale CDR feature of a texture image is constructed by combining CDRs at different scales. Experimental results on Brodatz, VisTex, and Outex databases demonstrate that our proposed multi-scale CDR-based texture classification method outperforms five representative texture classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 34–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pun, C.M., Lee, M.C.: Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 590–603 (2003)

    Article  Google Scholar 

  3. Liu, L., Fieguth, P.: Texture classification from random features. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 574–586 (2012)

    Article  Google Scholar 

  4. Po, D.D.Y., Do, M.N.: Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Image Process. 15(6), 1610–1620 (2006)

    Article  MathSciNet  Google Scholar 

  5. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback–Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  6. Li, L., Tong, C., Choy, S.K.: Texture classification using refined histogram. IEEE Trans. Image Process. 19(5), 1371–1378 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, Z., Liu, G., Yang, Y., You, J.: Scale- and rotation-invariant local binary pattern using scale-adaptive texton and subuniform-based circular shift. IEEE Trans. Image Process. 21(4), 2130–2140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qi, X., Xiao, R., Li, C., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2199–2213 (2014)

    Article  Google Scholar 

  9. Amirolad, A., Arashloo, S.R., Amirani, M.C.: Multi-layer local energy patterns for texture representation and classification. Vis. Comput. 32(12), 1633–1644 (2016)

    Article  Google Scholar 

  10. Choy, S.K., Tong, C.: Statistical properties of bit-plane probability model and its application in supervised texture classification. IEEE Trans. Image Process. 17(8), 1399–1405 (2008)

    Article  MathSciNet  Google Scholar 

  11. Selvan, S., Ramakrishnan, S.: SVD-based modeling for image texture classification using wavelet transformation. IEEE Trans. Image Process. 16(11), 2688–2696 (2007)

    Article  MathSciNet  Google Scholar 

  12. Lategahn, H., Gross, S., Stehle, T., Aach, T.: Texture classification by modeling joint distributions of local patterns with Gaussian mixtures. IEEE Trans. Image Process. 19(6), 1548–1557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, H., Jin, X., Willis, P.J.: Two-level joint local laplacian texture filtering. Vis. Comput. 32(5), 1537–1548 (2016)

    Article  Google Scholar 

  14. Pi, M., Tong, C., Choy, S.K., Zhang, H.: A fast and effective model for wavelet subband histograms and its application in texture image retrieval. IEEE Trans. Image Process. 15(10), 3078–3088 (2006)

    Article  Google Scholar 

  15. Dong, Y., Ma, J.: Texture classification based on contourlet subband clustering. In: 7th International Conference on Intelligent Computing, pp. 421–426. Zhengzhou (2011)

  16. Giachetti, A., Isaia, L., Garro, V.: Multiscale descriptors and metric learning for human body shape retrieval. Vis. Comput. 32(6), 693–703 (2016)

    Article  Google Scholar 

  17. Lin, C., Liu, C., Chen, H.: Image retrieval and classification using adaptive local binary patterns based on texture features. IET Image Process. 6(7), 822–830 (2012)

    Article  MathSciNet  Google Scholar 

  18. Subrahmanyam, M., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 510–514 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Shi, Y., Yi, Y., Yan, H., Dai, J., Zhang, M., Kong, J.: Region contrast and supervised locality-preserving projection-based saliency detection. Vis. Comput. 31(10), 1191–1205 (2015)

    Article  Google Scholar 

  20. Luo, G., Cordier, F., Seo, H.: Spacial-temporal segmentation for the similarity measurement of deforming meshes. Vis. Comput. 32(10), 243–256 (2016)

    Article  Google Scholar 

  21. Zhao, L., Zhang, Y., Yin, B., et al.: Fisher discrimination-based \(l_{2,1}\)-norm sparse representation for face recognition. Vis. Comput. 32(9), 1165–1178 (2016)

    Article  Google Scholar 

  22. Ma, M., Peng, S., Hu, X.: A lighting robust fitting approach of 3D morphable model for face reconstruction. Vis. Comput. 32(9), 1223–1238 (2016)

    Article  Google Scholar 

  23. Takallou, M.H., Kasaei, S.: Multiview face recognition based on multilinear decomposition and pose manifold. IET Image Process. 8(5), 300–309 (2014)

    Article  Google Scholar 

  24. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dash, K.S., Puhan, N.B., Panda, G.: Handwritten numeral recognition using non-redundant Stockwell transform and bio-inspired optimal zoning. IET Image Process. 9(10), 874–882 (2015)

    Article  Google Scholar 

  26. Zhao, G., Ahonen, T., Matas, J., Pietikäinen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Trans. Image Process 21(4), 1465–1477 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dong, Y., Ma, J.: Bayesian texture classification based on contourlet transform and BYY harmony learning of Poisson mixtures. IEEE Trans. Image Process. 21(3), 909–918 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dong, Y., Ma, J.: Wavelet-based image texture classification using local energy histograms. IEEE Trans. Signal Process. Lett. 18(4), 247–250 (2011)

    Article  MathSciNet  Google Scholar 

  29. Dong, Y., Ma, J.: Feature extraction through contourlet subband clustering for texture classification. Neurocomputing 116, 157–164 (2013)

    Article  Google Scholar 

  30. Dong, Y., Tao, D., Li, X., Ma, J., Pu, J.: Texture classification and retrieval using shearlets and linear regression. IEEE Trans. Cybern. 45(3), 358–369 (2015)

    Article  Google Scholar 

  31. Garnavi, R., Aldeen, M., Bailey, J.: Computer-aided diagnosis of melanoma using border- and wavelet-based texture analysis. IEEE Trans. Inf. Technol. Biomed. 16(6), 1239–1252 (2012)

    Article  Google Scholar 

  32. Ji, H., Yang, X., Ling, H., Xu, Y.: Wavelet domain multifractal analysis for static and dynamic texture classification. IEEE Trans. Image Process 22(1), 286–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ojala, T., Pietikaèinen, M., Maèenpaèa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–984 (2002)

    Article  Google Scholar 

  34. Feng, J., Dong, Y., Liang, L., Pu, J.: Dominant-completed local binary pattern for texture classification. In: IEEE 4th ICIA, pp. 233-238. Lijiang (2015)

  35. Sebastian, H., Andreas, U.: A scale- and orientation-adaptive extension of local binary patterns for texture classification. Pattern Recognit. 48(8), 2633–2644 (2015)

    Article  Google Scholar 

  36. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)

    Article  MATH  Google Scholar 

  37. Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao, Y., Huang, D., Jia, W.: Completed local binary count for rotation invariant texture classification. IEEE Trans. Image Process. 21(10), 4492–4497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen, J., Shan, S., He, C., Zhao, G., et al.: WLD: a robust local image descriptor. IEEE Trans. Pattern Analy. Mach. Intell. 32(9), 1705–1720 (2010)

    Article  Google Scholar 

  41. Liu, F., Tang, Z., Tang, J.: WLBP: weber local binary pattern for local image description. Neurocomputing 120, 1705–1720 (2013)

    Google Scholar 

  42. Ryu, J.B., Hong, S., Yang, H.: Sorted consecutive local binary pattern for texture classification. IEEE Trans. Image Process. 24(7), 2254–2265 (2015)

    Article  MathSciNet  Google Scholar 

  43. Liu, L., Long, Y., Fieguth, P.W., Lao, S., Zhao, G.: BRINT: binary rotation invariant and noise tolerant texture classification. IEEE Trans. Image Process. 23(7), 3071–3084 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ren, J., Jiang, X., Yuan, J.: Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans. Image Process. 22(10), 4049–4060 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant U1604153, and in part by the International Science and Technology Cooperation Project of Henan Province under Grant 162102410021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Feng, J., Yang, C. et al. Multi-scale counting and difference representation for texture classification. Vis Comput 34, 1315–1324 (2018). https://doi.org/10.1007/s00371-017-1415-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1415-4

Keywords

Navigation