Skip to main content

Advertisement

Log in

Role of normalization of breast thermogram images and automatic classification of breast cancer

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Breast thermography is a non-invasive imaging technique used for early detection of breast cancer based on temperatures. Temperature matrix of breast provides minute variations in temperatures, which is significant in early detection of breast cancer. The minimum, maximum temperatures and the their range may be different for each breast thermogram. Normalization of temperature matrices of breast thermograms is essential to bring the different range of temperatures to the common scale. In this article, we demonstrate the importance of temperature matrix normalization of breast thermograms. This paper also proposes a novel method for automatically classifying breast thermogram images using local energy features of wavelet sub-bands. A significant subset of features is selected by a random subset feature selection (RSFS) and genetic algorithm. Features selected by RSFS method are found to be relevant in detection of asymmetry between right and left breast. We have obtained an accuracy of 91%, sensitivity 87.23% and specificity 94.34% using SVM Gaussian classifier for normalized breast thermograms. Accuracy of classification between a set of hundred normalized and corresponding set of non-normalized breast thermograms are compared. An increase in accuracy of 16% is obtained for normalized breast thermograms in comparison with non-normalized breast thermograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acharya, U.R., Ng, E.Y.K., Sree, S.V., Chua, C.K., Chattopadhyay, S.: Higher order spectra analysis of breast thermograms for the automated identification of breast cancer. Expert Syst. 31(1), 37–47 (2014)

    Article  Google Scholar 

  2. Acharya, U.R., Ng, E.Y.K., Tan, J.H., Sree, S.V.: Thermography based breast cancer detection using texture features and support vector machine. J. Med. Syst. 36(3), 1503–1510 (2012)

    Article  Google Scholar 

  3. Ali, M.A.S., Sayed, G.I., Gaber, T., Hassanien, A.E., Snasel, V., Silva, L.F.: Detection of breast abnormalities of thermograms based on a new segmentation method. In: Proceedings of the Federated Conference on Computer Science and Information Systems(FedCSIS), vol. 5, pp. 255–261. IEEE (2015). doi:10.15439/2015F318

  4. Amirolad, A., Arashloo, S.R., Amirani, M.C.: Multi-layer local energy patterns for texture representation and classification. Vis. Comput. 32(12), 1633–1644 (2016)

    Article  Google Scholar 

  5. Araujo, M.C.D., de Lima, R.C.F., de Souza, R.M.C.R.: Interval symbolic feature extraction for thermography breast cancer detection. Expert Syst. Appl. 41(15), 6728–6737 (2014)

    Article  Google Scholar 

  6. Araujo, M.C.D., Lima, R.D.C.F.D., Magnani, F.S., da Silva, R.N.T., dos Santos, F.G.: The use of a database as an auxiliar tool in thermographic diagnosis for early detection of breast diseases. In: 12th Brazilian Congress of Thermal Engineering and Sciences, Belo Horizonte, MG (2008)

  7. Borchartt, T.B., Conci, A., de Lima, R.C.F., Resmini, R., Sanchez, A.: Breast thermography from an image processing view point: a survey. Int. J. Signal Process. 93(10), 2785–2803 (2013)

    Article  Google Scholar 

  8. Borchartt, T.B., Resmini, R., Conci, A.: Thermal feature analysis to aid on breast disease diagnosis. In: 21st Brazilian Congress of Mechanical Engineering, Natal, RN, Brazil, Proceedings of COBEM, ABCM, pp. 24–28 (2011)

  9. Berbar, M.A.: Three robust features extraction approaches for facial gender classification. Vis. Comput. 30(1), 19–31 (2014)

    Article  Google Scholar 

  10. Bezerra, L.A., de Oliveira, M.M., Rolim, T.L., Conci, A., Santos, F.G.S., Lyra, P.R.M., de Lima, R.C.F.: Estimation of breast tumor thermal properties using infrared images. Signal Process. 93(10), 2851–2863 (2013)

    Article  Google Scholar 

  11. Brioschi, M.L., Matias, J.E.F., Teixeira, M.J., Vargas, J.V.: Automated computer diagnosis of IR medical imaging. FLIR Tech. Ser. Appl. Note Res. Sci. 8(11), 1–6 (2011)

    Google Scholar 

  12. Devi, V.S., Murty, M.N.: Pattern Recognition Introduction, 2nd edn. Universities Press (India) Private Limited, Hyderabad (2013)

    MATH  Google Scholar 

  13. EtehadTavakol, M., Chandran, V., Ng, E.Y.K., Kafieh, R.: Breast cancer detection from thermal images using bispectral invariant features. Int. J. Therm. Sci. 69(1), 21–36 (2013)

    Article  Google Scholar 

  14. Gogoi, U.R., Majumdar, G., Bhowmik, M.K., Ghosh, A.K., Bhattacharjee, D.: Breast abnormality detection through statistical feature analysis using infrared thermograms. In: International Symposium on Advanced Computing and Communication (ISACC) Silchar, India, pp. 258–265. IEEE (2015)

  15. Gonzalez, R.C., Woods, E.R.: Digital Image Processing, 2nd edn. Pearson Education (Singapore) Pte. Ltd., Delhi (2005)

  16. Ismael, F.C., Carlos, B.M.J., Javier, A.L., Maria, G.C.P., Sergio, P.C., Angel, G.C.M., Manuel, S.Q.: Classification of factors influencing the use of infrared thermography in humans a review. Infrared Phys. Technol. 71, 28–55 (2015)

    Article  Google Scholar 

  17. Jayaraman, S., Esakkirajan, S., Veerakumar, T.: Digital Image Processing, 1st edn. Tata McGraw Hill Education Private Limited, New Delhi (2012)

    Google Scholar 

  18. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D.: Global cancer statistics. Cancer J. Clin. 61(2), 69–90 (2011)

    Article  Google Scholar 

  19. Krawczyk, B., Schaefer, G.: A hybrid classifier committee for analysing asymmetry features in breast thermograms. Appl. Soft Comput. 20(Special issue), 112–118 (2014)

    Article  Google Scholar 

  20. Kumar, V., Minz, S.: Feature selection: a literature review. Smart Comput. Rev. 4(3), 211–229 (2014)

    Article  Google Scholar 

  21. Lahiri, B.B., Subramainam, B., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55(4), 221–235 (2012)

    Article  Google Scholar 

  22. Lashkari, A., Pak, F., Firouzmand, M.: Full intelligent cancer classification of thermal breast images to assist physician in clinical diagnostic applications. J. Med. Signals Sens. 6(1), 12–24 (2016)

    Google Scholar 

  23. Ludwig, O., Nunes, U.: Novel maximum margin training algorithms for supervised neural networks. IEEE Trans. Neural Netw. 21(6), 972–984 (2010)

    Article  Google Scholar 

  24. Martis, R.J., Chakraborty, C., Ray, A.K.: Wavelet-based machine learning techniques for ECG signal analysis. In: Dua S (ed) Machine Learning in Healthcare Informatics, Intelligent Systems Reference Library, vol. 56, pp. 25–45. Springer (2014)

  25. Milosevic, M., Jankovic, D., Peulic, A.: Thermography based breast cancer detection using texture features and minimum variance quantization. EXCLI J. 13, 1204–1215 (2014)

    Google Scholar 

  26. Ng, E.Y.K., Sudharsan, N.: Computer simulation in conjunction with medical thermography as an adjunct tool for early detection of breast cancer. BMC Cancer 4, 17 (2004)

    Article  Google Scholar 

  27. Nicandro, C.R., Efren, M.M., Yaneli, A.A., Enrique, M.D.C.M., Gabriel, A.M.H., Nancy, P.C., Alejandr, G.H., de Jesus, H.R.G., Rocio, B.M.: Evaluation of the diagnostic power of thermography in breast cancer using bayesian network classifiers. Comput. Math. Methods Med. 2013(5), 1–10 (2013)

    Article  MATH  Google Scholar 

  28. Pohjalainena, J., Rsnena, O., Kadioglu, S.: Feature selection methods and their combinations in high dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang. 29(1), 145–171 (2015)

    Article  Google Scholar 

  29. Pramanik, S., Bhattacharjee, D., Nasipuri, M.: Wavelet based thermogram analysis for breast cancer detection. In: International Symposium on Advanced Computing and Communication (ISACC) Silchar, India, pp. 205–212. IEEE (2015)

  30. PROENG: Image processing and image analysis applied to mastology. http://visual.ic.uff.br/en/proeng (2015). Accessed 5 Oct 2015

  31. Qi, H., Snyder, W.E., Head, J.F., Elliott, R.L.: Detecting breast cancer from infrared images by asymmetry analysis. In: Engineering in Medicine and Biology Society Proceedings of the 22nd Annual International Conference of the IEEE , Chicago, IL, vol. 2, pp. 1227–1228 (2000)

  32. Suganthi, S.S., Swaminathan, R.: Analysis of breast thermograms using gabor wavelet anisotropy index. J. Med. Syst. 38(9), 101 (2014). doi:10.1007/s10916-014-0101-6

    Article  Google Scholar 

  33. Sathish, D., Kamath, S., Kadavigere, R., Prasad, K.: Medical imaging techniques and computer aided diagnostic approaches for the detection of breast cancer with an emphasis on thermography a review. Int. J. Med. Eng. Inform. 8(3), 275–299 (2016)

    Article  Google Scholar 

  34. Sathish, D., Kamath, S., Prasad, K., Kadavigere, R.: Asymmetry analysis of breast thermograms using automated segmentation and texture features. Signal Image Video Process. 11(4), 745–752 (2017). doi:10.1007/s11760-016-1018-y

    Article  Google Scholar 

  35. Schaefera, G., Zavisek, M., Nakashima, T.: Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recognit. 47(6), 1133–1137 (2009)

    Article  Google Scholar 

  36. Silva, L.F., Saade, D.C.M., Olivera, G.O.S., Silva, A.C., Paiva, A.C., Bravo, R.D., Conci, A.: A new database for breast research with infrared image. J. Med. Imaging Health Inform. 4(1), 92–100 (2014)

    Article  Google Scholar 

  37. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision, 2nd edn. Thomson Learning, Brooks/Cole Publishing Company, Pacific Grove, California (2004)

  38. de Souza, G.A.G.R., Brioschi, M.L., Vargas, J.V.C., Morais, K.C.C., Neto, C.D., Neves, E.B.: Reference breast temperature: proposal of an equation. Einstein (Sao Paulo) 13(4), 518–524 (2015)

    Article  Google Scholar 

  39. Subramainam, B., Lahiri, B.B., Saravanan, T., Philip, J., Jayakumar, T.: Infrared thermography for condition monitoring a review. Infrared Phys. Technol. 60, 35–55 (2013)

    Article  Google Scholar 

  40. Tang, X., Ding, H.: Asymmetry analysis of breast thermograms with morphological image segmentation. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, pp. 1680–1683. IEEE (2005)

  41. Thermology, of Clinical, A.C.: Breast thermography. http://www.thermologyonline.org (2015). Accessed 19 Jan 2015

  42. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2007)

    Article  Google Scholar 

  43. Zhuo, L., Zheng, J., Wang, F., Li, X., Ai, B., Qian, J.: A genetic algorithm based wrapper feature selection method for classification of hyperspectral images using support vector machine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII, 397–402 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surekha Kamath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish, D., Kamath, S., Prasad, K. et al. Role of normalization of breast thermogram images and automatic classification of breast cancer. Vis Comput 35, 57–70 (2019). https://doi.org/10.1007/s00371-017-1447-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1447-9

Keywords

Navigation