Skip to main content
Log in

Procedural modeling of rivers from single image toward natural scene production

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The rapid and flexible design of natural environments is an important yet challenging task in graphics simulation, virtual reality, and video game productions. This is particularly difficult for natural river modeling due to its complex topology, geometric diversity, and its natural interaction with the complicated terrain. In this paper, we introduce an integrated method for example-based procedural modeling to overcome such difficulties. First, we propose a compact parametric model to represent the certain river, which inherits typical features of natural rivers such as tributary, distributary, tortuosity, possible lakes adjacent to the river. Then, we demonstrate our method for generating 3D river scene solely based on the parametric model. However, choosing appropriate parameters is a tedious undertaking in practice. To further enhance our method’s functionality, we rely upon a natural river image to extract meaningful parameters toward the rapid procedural production of the new river scene. Finally, we design a new method to compare two river scenes and iteratively optimize the river network by using the simulated annealing technique. Our method can produce natural river scenes from an example river network and single terrain image with little interaction, and the synthesized scene is visually consistent with the input example in terms of feature similarity. We also demonstrate that our procedural modeling approach is highly automatic toward rapid scene production through various graphics examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Aliaga, D.G., Vanegas, C.A., Benes, B.: Interactive example-based urban layout synthesis. In: ACM Transactions on Graphics (TOG), vol. 27, p. 160. ACM (2008)

  2. Argudo, O., Andujar, C., Chica, A., Guérin, E., Digne, J., Peytavie, A., Galin, E.: Coherent multi-layer landscape synthesis. Vis. Comput. 33, 1005–1015 (2017)

    Article  Google Scholar 

  3. Brandt, J.W., Algazi, V.R.: Continuous skeleton computation by Voronoi diagram. CVGIP Image Underst. 55(3), 329–338 (1992)

    Article  MATH  Google Scholar 

  4. Cordonnier, G., Braun, J., Cani, M.P., Benes, B., Galin, E., Peytavie, A., Guérin, E.: Large scale terrain generation from tectonic uplift and fluvial erosion. Comput. Graph. Forum. 35, 165–175 (2016)

    Article  Google Scholar 

  5. Cordonnier, G., Galin, E., Gain, J., Benes, B., Guérin, E., Peytavie, A., Cani, M.P.: Authoring landscapes by combining ecosystem and terrain erosion simulation. ACM Trans. Graph. 36(4) (2017). https://doi.org/10.1145/3072959.3073667

  6. Derzapf, E., Ganster, B., Guthe, M., Klein, R.: River networks for instant procedural planets. Comput. Graph. Forum. 30, 2031–2040 (2011)

    Article  Google Scholar 

  7. Emilien, A., Bernhardt, A., Peytavie, A., Cani, M.P., Galin, E.: Procedural generation of villages on arbitrary terrains. Vis. Comput. 28(6–8), 809–818 (2012)

    Article  Google Scholar 

  8. Emilien, A., Poulin, P., Cani, M.P., Vimont, U.: Interactive procedural modelling of coherent waterfall scenes. Comput. Graph. Forum. 34, 22–35 (2015)

    Article  Google Scholar 

  9. Emilien, A., Vimont, U., Cani, M.P., Poulin, P., Benes, B.: Worldbrush: interactive example-based synthesis of procedural virtual worlds. ACM Trans. Graph. 34(4), 106 (2015)

    Article  Google Scholar 

  10. Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., Hanrahan, P.: Example-based synthesis of 3d object arrangements. ACM Trans. Graph. 31(6), 135 (2012)

    Article  Google Scholar 

  11. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph. 23, 652–663 (2004)

    Article  Google Scholar 

  12. Games, E.: Unreal engine. https://www.unrealengine.com (2007). Accessed 13 Nov 2017

  13. Génevaux, J.D., Galin, É., Guérin, E., Peytavie, A., Benes, B.: Terrain generation using procedural models based on hydrology. ACM Trans. Graph. 32(4), 143 (2013)

    Article  MATH  Google Scholar 

  14. Génevaux, J.D., Galin, E., Peytavie, A., Guérin, E., Briquet, C., Grosbellet, F., Benes, B.: Terrain modelling from feature primitives. Comput. Graph. Forum. 34, 198–210 (2015)

    Article  Google Scholar 

  15. Guerrero, P., Jeschke, S., Wimmer, M., Wonka, P.: Learning shape placements by example. ACM Trans. Graph. 34(4), 108 (2015)

    Article  Google Scholar 

  16. Han, J., Zhou, K., Wei, L.Y., Gong, M., Bao, H., Zhang, X., Guo, B.: Fast example-based surface texture synthesis via discrete optimization. Vis. Comput. 22(9–11), 918–925 (2006)

    Article  Google Scholar 

  17. Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A., Galin, E.: Feature based terrain generation using diffusion equation. Comput. Graph. Forum. 29, 2179–2186 (2010)

    Article  Google Scholar 

  18. Horton, R.E.: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 56(3), 275–370 (1945)

    Article  Google Scholar 

  19. Hou, F., Qin, H., Qi, Y.: Procedure-based component and architecture modeling from a single image. Vis. Comput. 32(2), 151–166 (2016)

    Article  Google Scholar 

  20. Huijser, R., Dobbe, J., Bronsvoort, W.F., Bidarra, R.: Procedural natural systems for game level design. In: 2010 Brazilian Symposium on Games and Digital Entertainment (SBGAMES), pp. 189–198. IEEE (2010)

  21. Ijiri, T., Mech, R., Igarashi, T., Miller, G.: An example-based procedural system for element arrangement. Comput. Graph. Forum. 27, 429–436 (2008)

    Article  Google Scholar 

  22. Kelley, A.D., Malin, M.C., Nielson, G.M.: Terrain Simulation Using a Model of Stream Erosion, vol. 22. ACM, New York (1988)

    Google Scholar 

  23. Kelly, G., McCabe, H.: A survey of procedural techniques for city generation. ITB J. 14, 87–130 (2006)

    Google Scholar 

  24. Landes, P.E., Galerne, B., Hurtut, T.: A shape-aware model for discrete texture synthesis. Comput. Graph. Forum. 32, 67–76 (2013)

    Article  Google Scholar 

  25. Mei, X., Decaudin, P., Hu, B.G.: Fast hydraulic erosion simulation and visualization on GPU. In: 15th Pacific Conference on Computer Graphics and Applications, 2007. PG’07, pp. 47–56. IEEE (2007)

  26. Merrell, P.: Example-based model synthesis. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, pp. 105–112. ACM (2007)

  27. Nishida, G., Garcia-Dorado, I., Aliaga, D.: Example-driven procedural urban roads. Comput. Graph. Forum. 35, 5–17 (2016)

    Article  Google Scholar 

  28. Nishida, G., Garcia-Dorado, I., Aliaga, D.G., Benes, B., Bousseau, A.: Interactive sketching of urban procedural models. ACM Trans. Graph. 35(4), 130 (2016)

    Article  Google Scholar 

  29. Pajarola, R., Gobbetti, E.: Survey of semi-regular multiresolution models for interactive terrain rendering. Vis. Comput. 23(8), 583–605 (2007)

    Article  Google Scholar 

  30. Prusinkiewicz, P., Hammel, M.: A fractal model of mountains and rivers. In: Proceedings of Graphics Interface, vol. 93, pp. 174–180. Canadian Information Processing Society (1993)

  31. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)

    Article  Google Scholar 

  32. Rusnell, B., Mould, D., Eramian, M.: Feature-rich distance-based terrain synthesis. Vis. Comput. 25(5), 573–579 (2009)

    Article  Google Scholar 

  33. Samavati, F., Runions, A.: Interactive 3d content modeling for digital earth. Vis. Comput. 32(10), 1293–1309 (2016)

    Article  Google Scholar 

  34. Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural modelling for virtual worlds. Comput. Graph. Forum. 33, 31–50 (2014)

    Article  Google Scholar 

  35. Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R.: A declarative approach to procedural modeling of virtual worlds. Comput. Graph. 35(2), 352–363 (2011)

    Article  Google Scholar 

  36. Št’ava, O., Beneš, B., Brisbin, M., Křivánek, J.: Interactive terrain modeling using hydraulic erosion. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 201–210. Eurographics Association, Switzerland (2008)

  37. Stava, O., Pirk, S., Kratt, J., Chen, B., Měch, R., Deussen, O., Benes, B.: Inverse procedural modelling of trees. Comput. Graph. Forum. 33, 118–131 (2014)

    Article  Google Scholar 

  38. Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. ACM Trans. Graph. 26, 87 (2007)

    Article  Google Scholar 

  39. Wang, F., Kang, L., Li, Y.: Sketch-based 3d shape retrieval using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1875–1883 (2015)

  40. Xu, K., Stewart, J., Fiume, E.: Constraint-based automatic placement for scene composition. Graph. Interface 2, 25–34 (2002)

    Google Scholar 

  41. Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: Scalable real-time animation of rivers. Comput. Graph. Forum. 28, 239–248 (2009)

    Article  Google Scholar 

  42. Zhang, H., Qu, D., Hou, Y., Gao, F., Huang, F.: Synthetic modeling method for large scale terrain based on hydrology. IEEE Access 4, 6238–6249 (2016)

    Article  Google Scholar 

  43. Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation models. IEEE Trans. Vis. Comput. Graph. 13(4), 834–848 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is partially supported by Natural Science Foundation of China (No.61532002, 61672237), Natural Science Foundation Grant NSF IIS-1715985, and National High-tech R&D Program of China (863 Program) under Grant 2015AA016404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-bo Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 35152 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Cb., Qin, H. et al. Procedural modeling of rivers from single image toward natural scene production. Vis Comput 35, 223–237 (2019). https://doi.org/10.1007/s00371-017-1465-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1465-7

Keywords

Navigation