Skip to main content
Log in

Histograms of Gaussian normal distribution for 3D feature matching in cluttered scenes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

3D feature descriptors provide essential information to find given models in captured scenes. In practical applications, these scenes often contain clutter. This imposes severe challenges on the 3D object recognition leading to feature mismatches between scenes and models. As such errors are not fully addressed by the existing methods, 3D feature matching still remains a largely unsolved problem. We therefore propose our Histograms of Gaussian Normal Distribution (HGND) for capturing salient feature information on a local reference frame (LRF) that enables us to solve this problem. We define a LRF on each local surface patch by using the eigenvectors of the scatter matrix. Different from the traditional local LRF-based methods, our HGND descriptor is based on the combination of geometrical and spatial information without calculating the distribution of every point and its geometrical information in a local domain. This makes it both simple and efficient. We encode the HGND descriptors in a histogram by the geometrical projected distribution of the normal vectors. These vectors are based on the spatial distribution of the points. We use three public benchmarks, the Bologna, the UWA and the Ca’ Foscari Venezia dataset, to evaluate the speed, robustness, and descriptiveness of our approach. Our experiments demonstrate that the HGND is fast and obtains a more reliable matching rate than state-of-the-art approaches in cluttered situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aldoma, A., Marton, Z.C., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B., Rusu, R.B., Gedikli, S., Vincze, M.: Tutorial: point cloud library: three-dimensional object recognition and 6 dof pose estimation. IEEE Robot. Autom. Mag. 19(3), 80–91 (2012)

    Article  Google Scholar 

  2. Aldoma, A., Vincze, M., Blodow, N., Gossow, D., Gedikli, S., Rusu, R.B., Bradski, G.: Cad-model recognition and 6dof pose estimation using 3d cues. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 585–592. IEEE (2011)

  3. Bariya, P., Nishino, K.: Scale-hierarchical 3d object recognition in cluttered scenes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1657–1664. IEEE (2010)

  4. Bariya, P., Novatnack, J., Schwartz, G., Nishino, K.: 3D geometric scale variability in range images: features and descriptors. Int. J. Comput. Vis. 99(2), 232–255 (2012)

    Article  MathSciNet  Google Scholar 

  5. Basdogan, C., Oztireli, A.C.: A new feature-based method for robust and efficient rigid-body registration of overlapping point clouds. Vis. Comput. 24(7–9), 679–688 (2008)

    Article  Google Scholar 

  6. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  7. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  Google Scholar 

  8. Berretti, S., Werghi, N., Del Bimbo, A., Pala, P.: Selecting stable keypoints and local descriptors for person identification using 3D face scans. Vis. Comput. 30(11), 1275–1292 (2014)

    Article  Google Scholar 

  9. Boyer, E., Bronstein, A.M., Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., et al.: Robust feature detection and description benchmark. In: 3DOR, pp. 71–78. Eurographics Association (2011)

  10. Buch, A.G., Petersen, H.G., Krüger, N.: Local shape feature fusion for improved matching, pose estimation and 3D object recognition. SpringerPlus 5(1), 297 (2016)

    Article  Google Scholar 

  11. Chen, H., Bhanu, B.: 3D free-form object recognition in range images using local surface patches. Pattern Recognit. Lett. 28(10), 1252–1262 (2007)

    Article  Google Scholar 

  12. Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3d object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997)

    Article  Google Scholar 

  13. Darom, T., Keller, Y.: Scale-invariant features for 3-d mesh models. IEEE Trans. Image Process. 21(5), 2758–2769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dutagaci, H., Cheung, C.P., Godil, A.: Evaluation of 3D interest point detection techniques via human-generated ground truth. Vis. Comput. 28(9), 901–917 (2012)

    Article  Google Scholar 

  15. Fan, Y., Wang, M., Geng, N., He, D., Chang, J., Zhang, J.J.: A self-adaptive segmentation method for a point cloud. Vis. Comput. 1–15 (2017). https://doi.org/10.1007/s00371-017-1405-6

  16. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  17. Flint, A., Dick, A., Van Den Hengel, A.: Thrift: Local 3d structure recognition. In: 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, pp. 182–188. IEEE (2007)

  18. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: European Conference on Computer Vision, pp. 224–237. Springer, Berlin (2004)

  19. Gomes, R.B., da Silva, B.M.F., de Medeiros Rocha, L.K., Aroca, R.V., Velho, L.C.P.R., Gonçalves, L.M.G.: Efficient 3d object recognition using foveated point clouds. Comput. Graph. 37(5), 496–508 (2013)

    Article  Google Scholar 

  20. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J.: 3D object recognition in cluttered scenes with local surface features: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014)

    Article  Google Scholar 

  21. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A comprehensive performance evaluation of 3D local feature descriptors. Int. J. Comput. Vis. 116(1), 66–89 (2016)

    Article  MathSciNet  Google Scholar 

  22. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3D local surface description and object recognition. Int. J. Comput. Vis. 105(1), 63–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, Y., Sohel, F., Bennamoun, M., Wan, J., Lu, M.: A novel local surface feature for 3D object recognition under clutter and occlusion. Inf. Sci. 293, 196–213 (2015)

    Article  Google Scholar 

  24. Guo, Y., Wang, F., Xin, J.: Point-wise saliency detection on 3d point clouds via covariance descriptors. Vis.Comput. 1–14 (2017). https://doi.org/10.1007/s00371-017-1416-3

  25. Han, P., Zhao, G.: CAD-based 3D objects recognition in monocular images for mobile augmented reality. Comput. Graph. 50, 36–46 (2015)

    Article  Google Scholar 

  26. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  27. Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D surf for robust three dimensional classification. Comput. Vis. ECCV 2010, 589–602 (2010)

    Google Scholar 

  28. Levoy, M., Gerth, J., Curless, B., Pull, K.: The stanford 3D scanning repository. http://www-graphics.stanford.edu/data/3dscanrep (2005)

  29. Li, Z., Kuang, Z., Liu, Y., Wang, J.: Multiscale shape context and re-ranking for deformable shape retrieval. Comput. Graph. 54, 8–17 (2016)

    Article  Google Scholar 

  30. Lim, J., Lee, K.: 3D object recognition using scale-invariant features. Vis. Comput. 1–14 (2017). https://doi.org/10.1007/s00371-017-1453-y

  31. Lo, T.W.R., Siebert, J.P.: Local feature extraction and matching on range images: 2.5 D SIFT. Comput. Vis. Image Underst. 113(12), 1235–1250 (2009)

    Article  Google Scholar 

  32. López-Sastre, R.J., García-Fuertes, A., Redondo-Cabrera, C., Acevedo-Rodríguez, F.J., Maldonado-Bascón, S.: Evaluating 3d spatial pyramids for classifying 3d shapes. Comput. Graph. 37(5), 473–483 (2013)

    Article  Google Scholar 

  33. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Compute. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  34. Mian, A.S.: Uwa dataset: 3d modeling and 3d object recognition data. http://www.csse.uwa.edu.au/~ajmal/ (2009)

  35. Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1584–1601 (2006)

    Article  Google Scholar 

  36. Mian, A.S., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2), 348–361 (2010)

    Article  Google Scholar 

  37. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. (TOG) 21(4), 807–832 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Paquet, E., Rioux, M., Murching, A., Naveen, T., Tabatabai, A.: Description of shape information for 2-D and 3-D objects. Signal Process. Image Commun. 16(1), 103–122 (2000)

    Article  Google Scholar 

  39. Petrelli, A., Di Stefano, L.: On the repeatability of the local reference frame for partial shape matching. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2244–2251. IEEE (2011)

  40. Redondo-Cabrera, C., López-Sastre, R.J., Acevedo-Rodriguez, J., Maldonado-Bascón, S.: Surfing the point clouds: selective 3d spatial pyramids for category-level object recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3458–3465. IEEE (2012)

  41. Rodolà, E., Albarelli, A., Bergamasco, F., Torsello, A.: A scale independent selection process for 3d object recognition in cluttered scenes. Int. J. Comput. Vis. 102(1–3), 129–145 (2013)

    Article  MathSciNet  Google Scholar 

  42. Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, IROS 2008, pp. 3384–3391. IEEE (2008)

  43. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2155–2162. IEEE (2010)

  44. Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (pcl). In: ), 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)

  45. Shah, S.A.A., Bennamoun, M., Boussaid, F.: A novel feature representation for automatic 3D object recognition in cluttered scenes. Neurocomputing 205, 1–15 (2016)

    Article  Google Scholar 

  46. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the harris operator for interest point detection on 3D meshes. Vis. Comput. 27(11), 963–976 (2011)

    Article  Google Scholar 

  47. Song, R., Liu, Y., Martin, R.R., Rosin, P.L.: 3D point of interest detection via spectral irregularity diffusion. Vis. Comput. 29(6–8), 695–705 (2013)

    Article  Google Scholar 

  48. Stein, F., Medioni, G.: Structural indexing: efficient 3-D object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 125–145 (1992)

    Article  Google Scholar 

  49. Taati, B., Greenspan, M.: Local shape descriptor selection for object recognition in range data. Comput. Vis. Image Underst. 115(5), 681–694 (2011)

    Article  Google Scholar 

  50. Tang, K., Song, P., Chen, X.: 3D object recognition in cluttered scenes with robust shape description and correspondence selection. IEEE Access 5, 1833–1845 (2017)

    Article  Google Scholar 

  51. Tombari, F., Salti, S., Di Stefano, L.: Bologna dataset. Computer Vision Lab, University of Bologna. http://www.vision.deis.unibo.it/research/80-shot (2010)

  52. Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3D data description. In: Proceedings of the ACM workshop on 3D object retrieval, pp. 57–62. ACM (2010)

  53. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: European Conference on Computer Vision, pp. 356–369. Springer, Berlin (2010)

  54. Tombari, F., Salti, S., Di Stefano, L.: A combined texture-shape descriptor for enhanced 3D feature matching. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 809–812. IEEE (2011)

  55. Wohlkinger, W., Vincze, M.: Ensemble of shape functions for 3d object classification. In: 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2987–2992. IEEE (2011)

  56. Yang, J., Zhang, Q., Xian, K., Xiao, Y., Cao, Z.: Rotational contour signatures for both real-valued and binary feature representations of 3D local shape. Comput. Vis. Image Underst. 160, 133–147 (2017). https://doi.org/10.1016/j.cviu.2017.02.004

  57. Zabulis, X., Lourakis, M.I., Koutlemanis, P.: Correspondence-free pose estimation for 3D objects from noisy depth data. Vis. Comput. 1–19 (2016)

  58. Zaharescu, A., Boyer, E., Horaud, R.: Keypoints and local descriptors of scalar functions on 2D manifolds. Int. J. Comput. Vis. 100(1), 78–98 (2012)

    Article  MATH  Google Scholar 

  59. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 373–380. IEEE (2009)

  60. Zhang, Z., Wang, L., Zhu, Q., Chen, S.K., Chen, Y.: Pose-invariant face recognition using facial landmarks and Weber local descriptor. Knowl. Based Syst. 84, 78–88 (2015)

    Article  Google Scholar 

  61. Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3d object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–696. IEEE (2009)

Download references

Acknowledgements

This work was supported by the University of Chinese Academy of Sciences (UCAS) Joint PhD Training Program (UCAS[2015]37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Ma, C., Yao, T. et al. Histograms of Gaussian normal distribution for 3D feature matching in cluttered scenes. Vis Comput 35, 489–505 (2019). https://doi.org/10.1007/s00371-018-1478-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1478-x

Keywords

Navigation