Skip to main content
Log in

Visual analysis of retinal changes with optical coherence tomography

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) enables noninvasive high-resolution 3D imaging of the human retina, and thus plays a fundamental role in detecting a wide range of ocular diseases. Despite the diagnostic value of OCT, managing and analyzing resulting data is challenging. We apply two visual analysis strategies for supporting retinal assessment in practice. First, we provide an interface for unifying and structuring data from different sources into a common basis. Fusing that basis with medical records and augmenting it with analytically derived information facilitates thorough investigations. Second, we present a tailored visual analysis tool for presenting, emphasizing, selecting, and comparing different aspects of the attributed data. This enables free exploration, reducing the data to relevant subsets, and focusing on details. By applying both strategies, we effectively enhance the management and the analysis of retinal OCT data for assisting medical diagnoses. Domain experts applied our solution successfully to study early retinal changes in patients suffering from type 1 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aaker, G.D., Gracia, L., Myung, J.S., Borcherding, V., Banfelder, J.R., D’Amico, D.J., Kiss, S.: Three-dimensional reconstruction and analysis of vitreomacular traction: quantification of cyst volume and vitreoretinal interface area. Arch. Ophthalmol. 129(6), 805–820 (2011). https://doi.org/10.1001/archophthalmol.2011.123

    Article  Google Scholar 

  2. Arias-Hernandez, R., Kaastra, L.T., Green, T.M., Fisher, B.: Pair analytics: capturing reasoning processes in collaborative visual analytics. In: Proceedings of the Hawaii International Conference on System Sciences, pp. 1–10. IEEE Computer Society, Washington, DC, USA (2011). https://doi.org/10.1109/HICSS.2011.339

  3. Baghaie, A., Yu, Z., D’Souza, R.M.: State-of-the-art in retinal optical coherence tomography image analysis. Quant. Imaging Med. Surg. 5(4), 603–617 (2015). https://doi.org/10.3978/j.issn.2223-4292.2015.07.02

    Google Scholar 

  4. Barla, P., Thollot, J., Markosian, L.: X-toon: an extended toon shader. In: DeCarlo, D., Markosian, L. (eds.) Proceedings of the International Symposium on Non-photorealistic Animation and Rendering, pp. 127–132. ACM, Annecy, France (2006). https://doi.org/10.1145/1124728.1124749

  5. Berufsverband der Augenärzte Deutschlands e. V., Deutsche Ophthalmologische Gesellschaft, Retinologische Gesellschaft e. V.: Quality assurance of optical coherence tomography for diagnostics of the fundus: positional statement of the BVA, DOG and RG. Der Ophthalmologe 114(7), 617–624 (2017). https://doi.org/10.1007/s00347-017-0508-9

  6. Chen, Q., Huang, S., Ma, Q., Lin, H., Pan, M., Liu, X., Lu, F., Shen, M.: Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma. Sci. Rep. 7, 41100 (2017). https://doi.org/10.1038/srep41100

    Article  Google Scholar 

  7. Chen, Y., Li, J., Yan, Y., Shen, X.: Diabetic macular morphology changes may occur in the early stage of diabetes. BMC Ophthalmol. 16, 12 (2016). https://doi.org/10.1186/s12886-016-0186-4

    Article  Google Scholar 

  8. De Clerck, E.E., Schouten, J.S., Berendschot, T.T., Kessels, A.G., Nuijts, R.M., Beckers, H.J., Schram, M.T., Stehouwer, C.D., Webers, C.A.: New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol. 3(8), 653–663 (2015). https://doi.org/10.1016/S2213-8587(15)00136-9

    Article  Google Scholar 

  9. Drexler, W., Morgner, U., Ghanta, R.K., Kärtner, F.X., Schuman, J.S., Fujimoto, J.G.: Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7(4), 502–507 (2001). https://doi.org/10.1038/86589

    Article  Google Scholar 

  10. Duncan, M.D., Bashkansky, M., Reintjes, J.: Subsurface defect detection in materials using optical coherence tomography. Opt. Express 2(13), 540–545 (1998). https://doi.org/10.1364/OE.2.000540

    Article  Google Scholar 

  11. Early Treatment Diabetic Retinopathy Study Research: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified airlie house classification: ETDRS report number 10. Ophthalmology 98(5), 786–806 (1991). https://doi.org/10.1016/S0161-6420(13)38012-9

    Article  Google Scholar 

  12. Ehnes, A., Wenner, Y., Friedburg, C., Preising, M.N., Bowl, W., Sekundo, W., zu Bexten, E.M., Stieger, K., Lorenz, B.: Optical coherence tomography (OCT) device independent intraretinal layer segmentation. Transl. Vis. Sci. Technol. 3, 1 (2014). https://doi.org/10.1167/tvst.3.1.1

    Article  Google Scholar 

  13. El-Fayoumi, D., Badr Eldine, N.M., Esmael, A.F., Ghalwash, D., Soliman, H.M.: Retinal nerve fiber layer and ganglion cell complex thicknesses are reduced in children with type 1 diabetes with no evidence of vascular retinopathy. Investig. Ophthalmol. Vis. Sci. 57(13), 5355 (2016). https://doi.org/10.1167/iovs.16-19988

    Article  Google Scholar 

  14. Elmqvist, N., Vande Moere, A., Jetter, H.C., Cernea, D., Reiterer, H., Jankun-Kelly, T.J.: Fluid interaction for information visualization. Inf. Vis. 10(4), 327–340 (2011). https://doi.org/10.1177/1473871611413180

    Article  Google Scholar 

  15. Garrido, M.G., Beck, S.C., Mühlfriedel, R., Julien, S., Schraermeyer, U., Seeliger, M.W.: Towards a quantitative OCT image analysis. PLoS ONE 9(6), 1–10 (2014). https://doi.org/10.1371/journal.pone.0100080

    Google Scholar 

  16. Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009). https://doi.org/10.1109/TMI.2009.2016958

    Article  Google Scholar 

  17. Glaßer, S., Hoffmann, T., Boese, A., Voß, S., Kalinski, T., Skalej, M., Preim, B.: Virtual inflation of the cerebral artery wall for the integrated exploration of OCT and histology data. Comput. Graph. Forum (2016). https://doi.org/10.1111/cgf.12994

    Google Scholar 

  18. Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Inf. Vis. 10(4), 289–309 (2011). https://doi.org/10.1177/1473871611416549

    Article  Google Scholar 

  19. Glittenberg, C., Krebs, I., Falkner-Radler, C., Zeiler, F., Haas, P., Hagen, S., Binder, S.: Advantages of using a ray-traced, three-dimensional rendering system for spectral domain cirrus HD-OCT to visualize subtle structures of the vitreoretinal interface. Ophthalmic Surg. Lasers Imaging 40(2), 127–134 (2009). https://doi.org/10.3928/15428877-20090301-08

    Article  Google Scholar 

  20. Hall, K.W., Perin, C., Kusalik, P.G., Gutwin, C., Carpendale, S.: Formalizing emphasis in information visualization. Comput. Graph. Forum 35(3), 717–737 (2016). https://doi.org/10.1111/cgf.12936

    Article  Google Scholar 

  21. Harrower, M., Brewer, C.A.: Colorbrewer.org: an online tool for selecting colour schemes for maps. Cartogr. J. 40(1), 27–37 (2003). https://doi.org/10.1179/000870403235002042

    Article  Google Scholar 

  22. Kahl, S., Ritter, M., Rosenthal, P.: Automated assessment of the injury situation in patients with age-related macular degeneration (AMD). In: Leon, F.P., Heizmann, M. (eds.) Proceedings of Forum Bildverarbeitung, pp. 179–190. KIT Scientific Publishing, Regensburg, Germany (2014). https://doi.org/10.5445/KSP/1000043608

  23. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual Analytics: Scope and Challenges, pp. 76–90. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-71080-6_6

    Google Scholar 

  24. Koleva-Georgieva, D.N.: Optical coherence tomography—segmentation performance and retinal thickness measurement errors. Eur. Ophthalmic Rev 6(2), 78–82 (2012). https://doi.org/10.17925/EOR.2012.06.02.78

    Article  Google Scholar 

  25. Kosara, R., Miksch, S., Hauser, H.: Semantic depth of field. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 97–104. IEEE Computer Society, San Diego, CA, USA (2001). https://doi.org/10.1109/INFVIS.2001.963286

  26. Mayer, M.A., Hornegger, J., Mardin, C.Y., Tornow, R.P.: Retinal nerve fiber layer segmentation on FD-OCT scans of normal subjects and glaucoma patients. Biomed. Opt. Exp. 1(5), 1358–1383 (2010). https://doi.org/10.1364/BOE.1.001358

    Article  Google Scholar 

  27. Moisseiev, E., Park, S., Yiu, G., Werner, J.S., Zawadzki, R.J.: The third dimension: advantages of 3D-OCT in retina—unprecedented detail of perfusion and other structures. Retin. Physician 13, 24–33 (2016)

    Google Scholar 

  28. Oat, C., Sander, P.V.: Ambient aperture lighting. In: Proceedings of the Symposium on Interactive 3D Graphics and Games, pp. 61–64. ACM, Seattle, WA, USA (2007). https://doi.org/10.1145/1230100.1230111

  29. Odell, D., Dubis, A.M., Lever, J.F., Stepien, K.E., Carroll, J.: Assessing errors inherent in OCT-derived macular thickness maps. J. Ophthalmol. (2011). https://doi.org/10.1155/2011/692574

  30. Placet, V., Méteau, J., Froehly, L., Salut, R., Boubakar, M.L.: Investigation of the internal structure of hemp fibres using optical coherence tomography and focused ion beam transverse cutting. J. Mater. Sci. 49(24), 8317–8327 (2014). https://doi.org/10.1007/s10853-014-8540-5

    Article  Google Scholar 

  31. Probst, J., Koch, P., Hüttmann, G.: Real-time 3D rendering of optical coherence tomography volumetric data. In: Andersen, P.E., Bouma, B.E. (eds.) Proceedings of SPIE optical coherence tomography and coherence techniques IV, pp. 73720Q–73731Q. SPIE, Munich, Germany (2009). https://doi.org/10.1117/12.831785

  32. Röhlig, M., Jünemann, A., Fischer, D.C., Prakasam, R.K., Stachs, O., Schumann, H.: Visual analysis of retinal OCT data. Klinische Monatsblätter für Augenheilkunde 234(12), 1463–1471 (2017). https://doi.org/10.1055/s-0043-121705

    Article  Google Scholar 

  33. Röhlig, M., Rosenthal, P., Schmidt, C., Schumann, H., Stachs, O.: Visual analysis of optical coherence tomography data in ophthalmology. In: Sedlmair, M., Tominski, C. (eds.) Proceedings of the EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association, Barcelona, Spain (2017). https://doi.org/10.2312/eurova.20171117

  34. Rosenthal, P., Ritter, M., Kowerko, D., Heine, C.: OphthalVis—making data analytics of optical coherence tomography reproducible. In: Lawonn, K., Hlawitschka, M., Rosenthal, P. (eds.) Proceedings of EuroVis Workshop on Reproducibility, Verification, and Validation in Visualization. The Eurographics Association, Groningen, Netherlands (2016). https://doi.org/10.2312/eurorv3.20161109

  35. Rosenthal, P., Ritter, M., Kowerko, D., Heine, C.: Unified OCT explorer (2016). http://bitbucket.org/uocte/

  36. Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W.: The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 82(7–8), 518–529 (2015). https://doi.org/10.1002/mrd.22489

    Article  Google Scholar 

  37. Schulze, J.P., Schulze-Döbold, C., Erginay, A., Tadayoni, R.: Visualization of three-dimensional ultra-high resolution OCT in virtual reality. Stud. Health Technol. Inform. 184, 387–391 (2013). https://doi.org/10.3233/978-1-61499-209-7-387

    Google Scholar 

  38. Sylwestrzak, M., Szlag, D., Szkulmowski, M., Targowski, P.: Real-time massively parallel processing of spectral optical coherence tomography data on graphics processing units. In: Leitgeb, R.A., Bouma, B.E. (eds.) Proceedings of SPIE Optical Coherence Tomography and Coherence Techniques V, pp. 80910V–80917V. Munich, Germany (2011). https://doi.org/10.1117/12.889805

  39. van Dijk, H.W., Kok, P.H.B., Garvin, M., Sonka, M., DeVries, J.H., Michels, R.P.J., van Velthoven, M.E.J., Schlingemann, R.O., Verbraak, F.D., Abràmoff, M.D.: Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 50(7), 3404 (2009). https://doi.org/10.1167/iovs.08-3143

    Article  Google Scholar 

  40. Wojtkowski, M., Srinivasan, V., Fujimoto, J.G., Ko, T., Schuman, J.S., Kowalczyk, A., Duker, J.S.: Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112(10), 1734–1746 (2005). https://doi.org/10.1016/j.ophtha.2005.05.023

    Article  Google Scholar 

  41. Yoshimura, N., Hangai, M.: OCT Atlas. Springer, Germany (2014)

    Book  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Heidelberg Engineering GmbH for providing OCT hardware, and respective software interfaces and analysis software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Röhlig.

Additional information

This work has been supported by the German Research Foundation (Project VIES) and by the German Federal Ministry of Education and Research (Project TOPOs)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röhlig, M., Schmidt, C., Prakasam, R.K. et al. Visual analysis of retinal changes with optical coherence tomography. Vis Comput 34, 1209–1224 (2018). https://doi.org/10.1007/s00371-018-1486-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1486-x

Keywords

Navigation