Skip to main content

Advertisement

Log in

Automatic identification and behavioral analysis of phlebotomine sand flies using trajectory features

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The present paper reports an automated approach for the characterization and analysis of the behavioral of sand flies; the method used is based on Gaussian mixture model and Kalman filter for the detection and tracking of sand flies, and then the extraction of an optimized set of features from the trajectory of flight is performed for the classification process. So, we propose here two optimized sets of features; the first one is used to identify sand flies among other insects, and the second is employed for the characterization of the behavioral change in the sand flies in the presence of a repulsive odor. These features are tested on three different classifiers; artificial neural network, support vector machine and K-nearest neighbor (KNN), and the results show an important improvement in the classification accuracy and confirm the effectiveness of our approach; the accuracy rate of the proposed method reached 88.6% for the identification of sand flies and 93.4% for the detection of their behavior change. Instead of the excessive use of pesticides over wide areas, the presented investigation is a key pillar of the development of an ecological way for a statistical information gathering about sand flies in order to fight against disease carried by those insects especially leishmaniosis and pappataci fever.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. www.who.int/whr/1996/media_centre/executive_summary1/en/index9.html. Accessed 20 Aug 2017

  2. Fry, S., Bichsel, M., Muller, P., Robert, D.: Tracking of flying insects using pan-tilt cameras. J. Neurosci. Methods 101, 59–67 (2000)

    Article  Google Scholar 

  3. Müller, P., Robert, D.: Death comes suddenly to the unprepared: singing crickets, call fragmentation, and parasitoid flies. Behav. Ecol. 13, 598–606 (2002)

    Article  Google Scholar 

  4. Frye, M., Tarsitano, M., Dickinson, M.: Odor localization requires visual feedback during free flight in Drosophila melanogaster. J. Exp. Biol. 206, 843–855 (2003)

    Article  Google Scholar 

  5. Poiesi, F., Cavallaro, A.: Tracking multiple high-density homogeneous targets. IEEE Trans. Circ. Syst. Video Technol. 25(4), 623–637 (2015)

    Article  Google Scholar 

  6. Solis-Sánchez, L.O., García-Escalante, J.J., Castaneda-Miranda, R., Torres-Pacheco, I., Guevara-González, R.G.: Machine vision algorithm for whiteflies (BemisiatabaciGenn.) scouting under greenhouse environment. J. Appl. Entomol. 133((7), 546–552 (2009)

    Article  Google Scholar 

  7. Solis-Sánchez, L.O., Castañeda-Miranda, R., García-Escalante, J.J., Torres-Pacheco, I., Guevara-González, R.G., Castañeda-Miranda, C.L., Alaniz-Lumbreras, P.D.: Scale invariant feature approach for insect monitoring. Comput. Electron. Agric. 75, 92–99 (2011)

    Article  Google Scholar 

  8. Qing, Y., Jun, L.V., Qing-jie, L.I.U., Guang-qiang, D., Bao-jun, Y., Hong-ming, C., Jian, T.: An insect imaging system to automate rice light-trap pest identification. J. Integr. Agric. 11(6), 978–985 (2012)

    Article  Google Scholar 

  9. Potamitis, I.: Classifying insects on the fly. Ecol. Inf. 21, 40–49 (2014)

    Article  Google Scholar 

  10. Feng, L., Bhanu, B., Heraty, J.: A software system for automated identification and retrieval of moth images based on wing attributes. Pattern Recogn. 51, 225–241 (2016)

    Article  Google Scholar 

  11. Kaya, Y., Kayci, L.: Application of artificial neural network for automatic detection of butterfly species using color and texture features. Vis. Comput. 30, 71–79 (2014)

    Article  Google Scholar 

  12. Li, F., Xiong, Y.: Automatic identification of butterfly species based on HoMSC and GLCMoIB. Vis Comput (2017). https://doi.org/10.1007/s00371-017-1426-1

  13. Chiu, C., En-Cheng, Y., Joe-Air, J., Ta-Te, L.: An imaging system for monitoring the in-and-out activity of honey bees. Comput. Electron. Agric. 89, 100–109 (2012)

    Article  Google Scholar 

  14. Qing, Y., Jun, L.V., Qing-jie, L., Guang-qiang, D., Bao-jun, Y., Hong-ming, C., Jian, T.: Automatic behavior analysis system for honeybees using computer vision. Comput. Electron. Agric. 122, 10–18 (2016)

    Article  Google Scholar 

  15. Cullinan, V.I., Matzner, S., Duberstein, C.A.: Classification of birds and bats using flight tracks. Ecol. Inf. 27, 55–63 (2015)

    Article  Google Scholar 

  16. Handoko, Yeffry, Nazaruddin, Yul Y., Hu, Huosheng: Using echo ultrasound from schooling fish to detect and classify fish types. J. Bionic Eng. 6(3), 264–269 (2009)

    Article  Google Scholar 

  17. Dutta, M.K., Sengar, N., Kamble, N., Banerjee, K., Minhas, N., Sarkar, B.: Image processing based technique for classification of fish quality after cypermethrine exposure. Food Sci. Technol. 68, 408–417 (2016)

    Google Scholar 

  18. Jhuang, H., Garrote, E., Yu, X., Khilnani, V., Poggio, T.D., Steele, A., Serre, T.: Automated home-cage behavioral phenotyping of mice. Nat. Commun. 1(5), 1–9 (2010)

    Article  Google Scholar 

  19. http://www.who.int/mediacentre/factsheets/fs375/en/. Accessed 20 Aug 2017

  20. Dube, S., Upadhyay, P.D., Tripathi, S.C.: Antifungal, physicochemical, and insect-repelling activity of the essential oil of Ocimumbasilicum. Can. J. Bot. 67(7), 2085–2087 (1989)

    Article  Google Scholar 

  21. Umerie, S.C., Anaso, H.U., Anyasoro, L.J.C.: Insecticidal potentials of Ocimum basilicum leaf-extract. Bioresour. Technol. 64(3), 237–239 (1998)

    Article  Google Scholar 

  22. Machraoui, A.N., Diouani, M.F., Ghrab, J., Sayadi, M.: Accurate detection and complete shape extraction of sand-flies using Gaussian mixture model. In: IEEE IPAS’14: International Image Processing Applications and Systems Conference. Hamamet, Tunisia (2014)

  23. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977). Series B

    MathSciNet  MATH  Google Scholar 

  24. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Log. Q. 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  25. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  26. Beyan, C., Fisher, R.B.: Detection of Abnormal Tish Trajectories Using a Clustering Based Hierarchical Classifier. BMVC, Bristol (2013)

    Google Scholar 

  27. Bashir, F.I., Khokhar, A.A., Schonfeld, D.: View-invariant motion trajectory-based activity classification and recognition. Multimed. Syst. 12(1), 45–54 (2006)

    Article  Google Scholar 

  28. Liwicki, M., Bunke, H., et al.: Hmm-based on line recognition of handwritten white board notes. In: Proceedings of the 10th International Workshop on Frontiers in Handwriting Recognition (2006)

  29. Beyan, C.: Detection of Unusual Fish Trajectories from Underwater Videos. Ph.D. Thesis, University of Edinburgh (2015)

  30. Tlig, L., Sayadi, M., Fnaiech, F.: A new fuzzy segmentation approach based on SFCM type 2 using LBP-GCO features. Signal Process. Image Commun. 27, 694–708 (2012)

    Article  Google Scholar 

  31. Zhang, G.P.: Neural networks for classification: a survey. IEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 30(4), 451–462 (2000)

    Article  Google Scholar 

  32. Berbar, M.A.: Three robust features extraction approaches for facial gender classification. Vis. Comput. 30(1), 19–31 (2014)

    Article  Google Scholar 

  33. Zanaty, E.A.: Support vector machines (SVMs) versus multilayer perception (MLP) in data classification. Egypt. Inf. J. 13(3), 177–183 (2012)

    Article  Google Scholar 

  34. Munisami, T., Ramsum, M., Kishnah, S., Pudaruth, S.: Plant leaf recognition using shape features and colour histogram with K-nearest neighbors classifiers. Proc. Comput. Sci. 58, 740–747 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Tropsense Project, ref: 645 758, H2020-MSCA-2014 RISE Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Nejmedine Machraoui or Mohamed Fethi Diouani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machraoui, A.N., Diouani, M.F., Mouelhi, A. et al. Automatic identification and behavioral analysis of phlebotomine sand flies using trajectory features. Vis Comput 35, 721–738 (2019). https://doi.org/10.1007/s00371-018-1506-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1506-x

Keywords

Navigation