Skip to main content
Log in

Revisiting correlation-based filters for low-resolution and long-term visual tracking

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we revisit the problem of visual tracking by introducing a novel low-dimensional descriptor based on gradient distribution and specifically focus our attention on the problem of low-resolution and long-term visual tracking. We show that our tracking solution empowered by our proposed descriptor can effectively address the existing challenges in low-resolution and long-term visual tracking. Compared to the existing descriptors, the proposed method provides better robustness against local geometric and photometric variations. It adopts a new approach for aggregating information in a local neighborhood such that the sensitivity of the descriptor to noise and unreliable texture information is reduced. Integrating the proposed descriptor into a correlation-based tracking framework results in a robust and fast visual tracker. An extensive set of experiments on a number of large-scale benchmark datasets shows that the proposed method outperforms the state-of-the-art methods on low-resolution and long-term challenges, while achieving state-of-the-art performance in generic tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The interested reader is referred to [10] for a more detailed derivation and description of the CN tracker.

  2. Shifting row and column elements of a matrix by m and n elements, respectively.

  3. For the sake of clarity, in all the figures only the results of the top ten trackers are included. Furthermore, the colors used in each of the plots indicate rankings in that figure (i.e., the red color is used for the best tracker/descriptor, green for the second best and so on).

References

  1. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.: Staple: complementary learners for real-time tracking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

  2. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2544–2550. IEEE (2010)

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893. IEEE (2005)

  4. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Eco: efficient convolution operators for tracking. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 21–26 (2017)

  5. Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, Nottingham, September 1–5, 2014. BMVA Press (2014)

  6. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In: CVPR (2016)

  7. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Convolutional features for correlation filter based visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 58–66 (2015)

  8. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4310–4318 (2015)

  9. Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters: Learning continuous convolution operators for visual tracking. In: European Conference on Computer Vision, pp. 472–488. Springer (2016)

  10. Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1090–1097 (2014)

  11. Dollár, P.: Piotr’s Computer Vision Matlab Toolbox (PMT). https://github.com/pdollar/toolbox

  12. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  13. Gao, J., Ling, H., Hu, W., Xing, J.: Transfer learning based visual tracking with gaussian processes regression. In: European Conference on Computer Vision, pp. 188–203. Springer (2014)

  14. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC, vol. 1, p. 6 (2006)

  15. Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: 2011 International Conference on Computer Vision, pp. 263–270. IEEE (2011)

  16. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 fps with deep regression networks. In: European Conference on Computer Vision, pp. 749–765. Springer (2016)

  17. Henriques, J.F., Carreira, J., Caseiro, R., Batista, J.: Beyond hard negative mining: efficient detector learning via block-circulant decomposition. In: proceedings of the IEEE International Conference on Computer Vision, pp. 2760–2767 (2013)

  18. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: European Conference on Computer Vision, pp. 702–715. Springer (2012)

  19. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  20. Hong, Z., Chen, Z., Wang, C., Mei, X., Prokhorov, D., Tao, D.: Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 749–758 (2015)

  21. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1822–1829. IEEE (2012)

  22. Kalal, Z., Matas, J., Mikolajczyk, K.: Pn learning: bootstrapping binary classifiers by structural constraints. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 49–56. IEEE (2010)

  23. Kiani Galoogahi, H., Sim, T., Lucey, S.: Multi-channel correlation filters. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3072–3079 (2013)

  24. Kumar, B.V., Mahalanobis, A., Juday, R.D.: Correlation Pattern Recognition. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  25. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: European Conference on Computer Vision, pp. 254–265. Springer (2014)

  26. Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans. Image Process. 24(12), 5630–5644 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  28. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3074–3082 (2015)

  29. Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5388–5396 (2015)

  30. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for uav tracking. In: Proceedings of the European Conference on Computer Vision (ECCV) (2016)

  31. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4293–4302. IEEE (2016)

  32. Naresh Boddeti, V., Kanade, T., Vijaya Kumar, B.: Correlation filters for object alignment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2291–2298 (2013)

  33. Possegger, H., Mauthner, T., Bischof, H.: In defense of color-based model-free tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2113–2120 (2015)

  34. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  35. Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1910–1917. IEEE (2012)

  36. Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  38. Zhang, J., Ma, S., Sclaroff, S.: Meem: robust tracking via multiple experts using entropy minimization. In: European Conference on Computer Vision, pp. 188–203. Springer (2014)

  39. Zhang, K., Liu, Q., Wu, Y., Yang, M.H.: Robust visual tracking via convolutional networks without training. IEEE Trans. Image Process. 25(4), 1779–1792 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Fazl-Ersi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazl-Ersi, E., Kazemi Nooghabi, M. Revisiting correlation-based filters for low-resolution and long-term visual tracking. Vis Comput 35, 1447–1459 (2019). https://doi.org/10.1007/s00371-018-1510-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1510-1

Keywords

Navigation