Skip to main content
Log in

Carve in, carve out: a bimodal carving through voxelization and functional partitioning

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose in this paper a novel technique for pattern-guided carving on an orientable 2-manifold surface. Its novelty lies in processing the surface in voxel space using certain theories and deductions of digital geometry. The carving pipeline designed by us is bimodal in nature, as it can generate both ‘negative’ and ‘positive’ carvings by carve in and carve out alongside the specified pattern. The 2D pattern is easily mapped to the 3D surface, as we consider the thinnest voxelized model. We perform functional partition of the voxelized surface and use a local optimization with these components in order to achieve a realistic carving. Necessary theoretical foundations, implementation details, and experimental results have been furnished to adjudge the merit of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alexa, M., Hildebrand, K., Lefebvre, S.: Optimal discrete slicing. ACM ToG 36, 12:1–12:16 (2017)

    Article  Google Scholar 

  2. Barneva, R.P., Brimkov, V.E., Nehlig, P.: Thin discrete triangular meshes. Theoret. Comput. Sci. 246, 73–105 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barton, W.: The Complete Guide to Chip Carving. Sterling Publishing Co. Inc., New York (2007)

    Google Scholar 

  4. Bhunre, P.K., Bhowmick, P., Mukherjee, J.: On efficient computation of inter-simplex Chebyshev distance for voxelization of 2-manifold surface. Inf. Sci. (2018) (in press). https://doi.org/10.1016/j.ins.2018.03.006

  5. Brimkov, V.E., Barneva, R.P.: Plane digitization and related combinatorial problems. Discrete App. Math. 147(2–3), 169–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brunton, A., Arikan, C.A., Urban, P.: Pushing the limits of 3D color printing: error diffusion with translucent materials. ACM ToG 35(1), 4:1–4:13 (2015)

    Article  Google Scholar 

  8. Chen, Y., Han, X., Okada, M., Chen, Y.: Integrative 3D modelling of complex carving surface. Comput. Aided Des. 40(1), 123–132 (2008)

    Article  Google Scholar 

  9. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 75(6), 453–461 (1995)

    Article  Google Scholar 

  10. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57(6), 453–461 (1995)

    Article  Google Scholar 

  11. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of SIGGRAPH’96, pp. 303–312 (1996)

  12. Dachille, F., Kaufman, A.E.: Incremental triangle voxelization. In: Proceedings of GI’00, pp. 205–212 (2000)

  13. Dionne, O., de Lasa, M.: Geodesic voxel binding for production character meshes. In: Proceedings of SCA’13, pp. 173–180 (2013)

  14. Dumas, J., Lu, A., Lefebvre, S., Wu, J., Dick, C.: By-example synthesis of structurally sound patterns. ACM ToG 34, 137:1–137:12 (2015)

    Article  Google Scholar 

  15. Fei, Y., Wang, B., Chen, J.: Point-tessellated voxelization. In: Proceedings of GI’12, pp. 9–18 (2012)

  16. Gershenfeld, N.A.: The Nature of Mathematical Modeling. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  17. Huang, J., Yagel, R., Filippov, V., Kurzion, Y.: An accurate method for voxelizing polygon meshes. In: Proceedings of VVS’98, pp. 119–126 (1998)

  18. Kämpe, V., Sintorn, E., Assarsson, U.: High resolution sparse voxel DAGs. ACM ToG 32, 101:1–101:13 (2013)

    Article  MATH  Google Scholar 

  19. Karabassi, E.-A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based voxelization algorithm. J. Graph. Tools 4(4), 5–10 (1999)

    Article  Google Scholar 

  20. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  21. Koa, M.D., Johan, H.: ESLPV: enhanced subsurface light propagation volumes. TVC 30, 821–831 (2014)

    Article  Google Scholar 

  22. Laine, S.: A topological approach to voxelization. Comput. Graph. Forum 32(4), 77–86 (2013)

    Article  Google Scholar 

  23. Laine, S.: System, method, and computer program product implementing an algorithm for performing thin voxelization of a 3D model. US Patent 9245363 (2016)

  24. Laine, S., Karras, T.: Efficient sparse voxel octrees. In: Proceedings of I3D’10, pp. 55–63 (2010)

  25. Levin, D.: The approximation power of moving least-squares. Math. Comput. 67, 1517–1531 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lozano-Durán, A., Borrell, G.: Algorithm 964: an efficient algorithm to compute the genus of discrete surfaces and applications to turbulent flows. ACM Trans. Math. Softw. 42, 34:1–34:19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Niebner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3D reconstruction at scale using voxel hashing. ACM ToG 32, 169:1–169:11 (2013)

    Google Scholar 

  28. Pantaleoni, J.: VoxelPipe: A programmable pipeline for 3D voxelization. In: Proceedings of HPG’11, pp. 99–106 (2011)

  29. Pasko, A., Savchenko, V., Sourin, A.: Synthetic carving using implicit surface primitives. Comput. Aided Des. 33, 379–388 (2001)

    Article  Google Scholar 

  30. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM ToG 25, 533–540 (2006)

    Article  Google Scholar 

  31. Schwarz, M., Seidel, H.-P.: Fast parallel surface and solid voxelization on GPUs. ACM ToG 29, 179:1–179:10 (2010)

    Article  Google Scholar 

  32. Sintorn, E., Kämpe, V., Olsson, O., Assarsson, U.: Compact precomputed voxelized shadows. ACM ToG 33, 150:1–150:8 (2014)

    Article  Google Scholar 

  33. Wu, J., Dick, C., Westermann, R.: A system for high-resolution topology optimization. IEEE TVCG 22, 1195–1208 (2016)

    Google Scholar 

  34. Zhang, J.: Speeding up large-scale geospatial polygon rasterization on GPGPUs. In: Proceedings of HPDGIS’11, pp. 10–17 (2011)

  35. Zhang, L., Chen, W., Ebert, D.S., Peng, Q.: Conservative voxelization. TVC 23, 783–792 (2007)

    Article  Google Scholar 

  36. Zhao, S., Hašan, M., Ramamoorthi, R., Bala, K.: Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures. ACM ToG 32, 131:1–131:12 (2013)

    MATH  Google Scholar 

  37. Zollhofer, M., Dai, A., Innmann, M., Wu, C., Stamminger, M., Theobalt, C., Niebner, M.: Shading-based refinement on volumetric signed distance functions. ACM ToG 34, 96:1–96:14 (2015)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Bhowmick.

Ethics declarations

Conflict of interest

This work has no potential conflicts of interest and is carried out as an independent research work without any research grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunre, P.K., Bhowmick, P. Carve in, carve out: a bimodal carving through voxelization and functional partitioning. Vis Comput 34, 1009–1019 (2018). https://doi.org/10.1007/s00371-018-1527-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1527-5

Keywords

Navigation