Skip to main content
Log in

Implicit surfaces from polygon soup with compactly supported radial basis functions

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a method for generating implicit surfaces from polygon soups based on compactly supported radial basis functions (CSRBFs). The surface is represented as the zero level set of an implicit function which interpolates the polygonal data with their outward normal constraints. By specifying two parameters, the support size and the shape parameter, users can flexibly control the accuracy of the reconstructed surfaces. For determining coefficients of RBFs, our method uses a quasi-interpolation framework to avoid solving a large linear system, which allows processing large meshes efficiently and robustly. Moreover, a relationship between the shape parameter and the support radius is provided for the quasi-solution validity, and an error bound of the reconstructed surfaces approximating the original models is deduced through the rigorous theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aan, H., Brentzen, J. A.: Pseudo-normals for signed distance computation. In: Vision, Modeling, and Visualization Conference, pp. 407–413 (2003)

  2. Berger, M., Levine, J.A., Nonato, L.G., Taubin, G., Silva, C.T.: A benchmark for surface reconstruction. ACM Trans. Graph. 32(2), 20 (2013)

    Article  MATH  Google Scholar 

  3. Berger, M., Tagliasacchi, A., Seversky, L.M., Alliez, P., Levine, J.A., Sharf, A., Silva, C.T.: State of the art in surface reconstruction from point clouds. Comput. Graph. Forum 36(1), 301–329 (2017)

    Article  Google Scholar 

  4. Bloomenthal, J.: Polygonization of implicit surfaces. Comput. Aid. Geom. Des. 5(4), 341–355 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brentzen, J.A., Aan, H.: Signed distance computation using the angle weighted pseudonormal. IEEE Trans. Vis. Comput. Graph. 11(3), 243–253 (2005)

    Article  Google Scholar 

  6. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., Mccallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Conference on Computer Graphics and Interactive Techniques, pp. 67–76 (2001)

  7. Gois, J.P., Trevisan, D.F., Batagelo, H.C., Macêdo, I.: Generalized Hermitian radial basis functions implicits from polygonal mesh constraints. Vis. Comput. 29(6), 651–661 (2013)

    Article  Google Scholar 

  8. Han, X., Hou, M.: Quasi-interpolation for data fitting by the radial basis functions. In: Advances in Geometric Modeling and Processing, pp. 541–547 (2008)

  9. Hu, L., Li, Q., Liu, S., Liu, X., Wang, Z.: Wavelet-based polygon soup consolidation. Comput. Graph. 70, 39–50 (2017)

    Article  Google Scholar 

  10. Jin, X., Tai, C.-L., Zhang, H.: Implicit modeling from polygon soup using convolution. Vis. Comput. 25(3), 279–288 (2009)

    Article  Google Scholar 

  11. Jones, M.W., Baerentzen, J.A., Sramek, M.: 3d distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12(4), 581–599 (2006)

    Article  Google Scholar 

  12. Ju, T.: Robust repair of polygonal models. ACM Trans. Graph. 23(3), 888–895 (2004)

    Article  Google Scholar 

  13. Kanai, T., Ohtake, Y., Kase, K.: Hierarchical error-driven approximation of implicit surfaces from polygonal meshes. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 21–30. Eurographics Association, Aire-la-Ville, Switzerland (2006)

  14. Liu, S., Brunnett, G., Wang, J.: Multi-level hermite variational interpolation and quasi-interpolation. Vis. Comput. 29(6–8), 627–637 (2013)

    Article  Google Scholar 

  15. Liu, S., Wang, C.C.L.: Quasi-interpolation for surface reconstruction from scattered data with radial basis function. Comput. Aid. Geom. Des. 29(7), 435–447 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, S., Wang, C.C.L., Brunnett, G., Wang, J.: A closed-form formulation of hrbf-based surface reconstruction by approximate solution. Comput.-Aid. Des. 78(C), 147–157 (2016)

    Article  Google Scholar 

  17. Liu, S., Xiao, J., Hu, L., Liu, X.: Shape parameter and error bound for implicit surface from polygon soup with CSRBFs. Technical Report (2018)

  18. Macêdo, I., Gois, J.P., Velho, L.: Hermite radial basis functions implicits. Comput. Graph. Forum 30(1), 27–42 (2011)

    Article  Google Scholar 

  19. Ohtake, Y., Belyaev, A.G., Seidel, H.: 3d scattered data interpolation and approximation with multilevel compactly supported rbfs. Graph. Models 67(3), 150–165 (2005)

    Article  MATH  Google Scholar 

  20. Pan, R., Meng, X., Whangbo, T.: Hermite variational implicit surface reconstruction. Sci. China Ser. F: Inf. Sci. 52(2), 308–315 (2009)

    Article  MATH  Google Scholar 

  21. Park, T., Lee, S.H., Kim, C.H.: Analytic solutions of integral moving least squares for polygon soups. IEEE Trans. Vis. Comput. Graph. 18(10), 1638–1649 (2012)

    Article  Google Scholar 

  22. Sanchez, M., Fryazinov, O., Fayolle, P.-A., Pasko, A.: Convolution filtering of continuous signed distance fields for polygonal meshes. Comput. Graph. Forum 34(6), 277–288 (2015)

    Article  Google Scholar 

  23. Shen, C., Obrien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 23(3), 896–904 (2005)

    Article  Google Scholar 

  24. Suli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  25. Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Trans. Graph. 21(4), 855–873 (2002)

    Article  Google Scholar 

  26. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  27. Wu, Z., Xiong, Z.: Multivariate quasi-interpolation in lp(d) with radial basis functions for scattered data. Int. J. Comput. Math. 87(3), 583–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yngve, G., Turk, G.: Robust creation of implicit surfaces from polygonal meshes. IEEE Trans. Vis. Comput. Graph. 8(4), 346–359 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (NSFC) Grants (Nos. 61572527 and 61602524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinru Liu.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest.

Appendix: Integral over the triangles

Appendix: Integral over the triangles

Here, we discuss the following integrals:

$$\begin{aligned} \begin{aligned}&\underset{\varDelta ABC}{\int }\phi (||\mathbf{q }-\mathbf{p }||) \,{\hbox {d}}\mathbf{p }, \underset{\widehat{q_{1}Oq_{2}}}{\int }\phi (||\mathbf{q }-\mathbf{p }||) \,{\hbox {d}}\mathbf{p }. \end{aligned} \end{aligned}$$

For the triangle region \( \varDelta \mathbf ABC \) in Fig. 2, we define

$$\begin{aligned} \begin{aligned} h&=R^{2}+\lambda ||\mathbf{Aq}||^{2},l_{1}=||\mathbf{AC}||, l_{2}=||\mathbf{AB}||,\\ a&=\mathbf{Aq}\cdot \frac{\mathbf{AC}}{l_{1}}, b=\mathbf{Aq}\cdot \frac{\mathbf{AB}}{l_{2}},c=\cos A. \end{aligned} \end{aligned}$$

For the sector region \( \widehat{q_{1}Oq_{2}} \) in Fig. 2, we define

$$\begin{aligned} r=\sqrt{R^{2}-||\mathbf{Oq }||^{2}},\mathbf e _{1}=\frac{\mathbf{Oq }_{2}}{r}, \mathbf e _{2}=\mathbf{n }\times \mathbf e _{1}, \end{aligned}$$
(9)

where \( \mathbf{n } \) is the unit normal vector of the triangle.

  1. 1.
    $$\begin{aligned} \begin{aligned}&\underset{\varDelta ABC}{\int }\phi (||\mathbf{q }-\mathbf{p }||) \,{\hbox {d}}\mathbf{p }=\delta _{1}^{1}+\delta _{2}^{1}+\delta _{3}^{1}. \delta _{1}^{1}\\&\quad =\frac{l_{1}l_{2}\sin A}{\lambda ^{2}R^{2}} (\frac{h}{2}-\frac{1}{3}\lambda al_{1}-\frac{1}{3}\lambda bl_{2}+ \frac{1}{12}\lambda l_{1}^{2}+\frac{1}{12}\lambda l_{2}^{2}\\&\qquad +\frac{1}{12}\lambda cl_{1}l_{2}). \delta _{2}^{2}\\&\quad =-\frac{l_{1}l_{2}}{\lambda }(1+\frac{1}{\lambda })\sin A. \delta _{3}^{1}\\&\quad =R^{2}(1+\frac{1}{\lambda })^{2}l_{1}l_{2}\sin A\delta _{4}^{1}. \delta _{4}^{1}\\&\quad =\int _{0}^{1}\,du\int _{0}^{1-u}\frac{1}{\delta (u,v)}\,{\hbox {d}}v. \delta (u,v)\\&\quad =h+\lambda l_{2}^{2}u^{2}+\lambda l_{1}^{2}v^{2}-2\lambda bl_{2}u-2\lambda al_{1}v+ 2\lambda cl_{1}l_{2}uv. \end{aligned} \end{aligned}$$
  2. 2.
    $$\begin{aligned} \begin{aligned}&\underset{\widehat{q_{1}Oq_{2}}}{\int }\phi (||\mathbf{q }-\mathbf{p }||) \,{\hbox {d}}\mathbf{p }=\delta _{1}^{2}+\delta _{2}^{2}+\delta _{3}^{2}. \delta _{1}^{2}\\&\quad =\frac{\alpha r^{2}}{4\lambda ^{2}R^{2}} ((2+\lambda )R^{2}+\lambda ||\mathbf{Oq }||^{2}). \delta _{2}^{2}\\ {}&\quad =-\frac{\alpha }{\lambda }(1+\frac{1}{\lambda })r^{2}. \delta _{3}^{2}\\&\quad =\frac{\alpha R^{2}}{2\lambda }(1+\frac{1}{\lambda })^{2} \ln \frac{R^{2}(1+\lambda )}{R^{2}+\lambda ||\mathbf{Oq }||^{2}}. \end{aligned} \end{aligned}$$

In I, we cannot get a closed-form solution of the two-dimensional integral \( \delta _{4}^{1} \). Defining

$$\begin{aligned}&W=h+\lambda l_{2}^{2}(1-c^{2})u^{2}+2(ac-b)\lambda l_{2}u-\lambda a^{2},\\&\beta _{1}=cl_{2}u-a,\\&\beta _{2}=l_{1}(1-u)+cl_{2}u-a, \end{aligned}$$

then, we have

$$\begin{aligned} \int _{0}^{1}\,du\int _{0}^{1-u}\frac{1}{\delta (u,v)}\,{\hbox {d}}v= \int _{0}^{1}\,du\int _{\beta _{1}}^{\beta _{2}}\frac{1}{W+\lambda t^{2}}\,{\hbox {d}}t. \end{aligned}$$

For the integral \(\tau (u) = \int _{\beta _{1}}^{\beta _{2}}\frac{1}{W+\lambda t^{2}}\,{\hbox {d}}t\), we can obtain the following results according to the value of W.

  1. 1.

    If \( W>0 \),then

    $$\begin{aligned} \tau (u) = \frac{1}{\sqrt{\lambda W}} \left( \arctan \left( \sqrt{\frac{\lambda }{W}}\beta _{2}\right) -\arctan \left( \sqrt{\frac{\lambda }{W}}\beta _{1}\right) \right) . \end{aligned}$$
  2. 2.

    If \( W=0 \),then

    $$\begin{aligned} \tau (u) = \frac{1}{\lambda } \left( \frac{1}{\beta _{1}}-\frac{1}{\beta _{2}}\right) . \end{aligned}$$
  3. 3.

    If \( W<0 \),then

    $$\begin{aligned} \tau (u) = \frac{1}{2\sqrt{-\lambda W}} \left( \ln \left|\frac{\sqrt{\frac{-\lambda }{W}}\beta _{2}-1}{\sqrt{\frac{-\lambda }{W}}\beta _{2}+1}\right|-\ln \left|\frac{\sqrt{\frac{-\lambda }{W}}\beta _{1}-1}{\sqrt{\frac{-\lambda }{W}}\beta _{1}+1}\right|\right) . \end{aligned}$$

After that, the integral \(\int _{0}^{1}\tau (u)\,{\hbox {d}}u\) is computed with a numerical method (the composite Simpson rule [24]) and the final equations are not given out here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xiao, J., Hu, L. et al. Implicit surfaces from polygon soup with compactly supported radial basis functions. Vis Comput 34, 779–791 (2018). https://doi.org/10.1007/s00371-018-1529-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1529-3

Keywords

Navigation