Skip to main content
Log in

Efficiently consistent affinity propagation for 3D shapes co-segmentation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Unsupervised co-segmentation for a set of 3D shapes is a challenging problem as no prior information is provided. The accuracy of the current approaches is necessarily restricted by the accuracy of the unsupervised face classification, which is used to provide an initialization for the following optimization to improve the consistency between adjacent faces. However, it is exceedingly difficult to obtain a satisfactory initialization pre-segmentation owing to variation in topology and geometry of 3D shapes. In this study, we consider the unsupervised 3D shape co-segmentation as an exemplar-based clustering problem, aimed at simultaneously discovering optimal exemplars and obtaining co-segmentation results. Therefore, we introduce a novel exemplar-based clustering method based on affinity propagation for 3D shape co-segmentation, which can automatically identify representative exemplars and patterns in 3D shapes considering the high-order statistics, yielding consistent and accurate co-segmentation results. Experiments using various datasets, especially large sets with 200 or more shapes that would be challenging to manually segment, demonstrate that our method exhibits a better performance compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. We thanks the authors of [9, 28] for kindly sharing their experimental data with us.

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE TPAMI 24(4), 509–522 (2002)

    Article  Google Scholar 

  2. Chaudhuri, S., Kalogerakis, E., Guibas, L., Koltun, V.: Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graph. 30(4), 35:1–35:10 (2011)

    Article  Google Scholar 

  3. Chen, K., Xu, K., Yu, Y., Wang, T.Y., Hu, S.M.: Magic decorator: automatic material suggestion for indoor digital scenes. ACM Trans. Graph. 34(6), 232:1–232:11 (2015)

    Google Scholar 

  4. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28(3), 73:1–73:12 (2009)

    Article  Google Scholar 

  5. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)

    Article  Google Scholar 

  7. Golovinskiy, A., Funkhouser, T.: Consistent segmentation of 3D models. Comput. Graph. 33(3), 262–269 (2009)

    Article  Google Scholar 

  8. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of SIGGRAPH, pp. 203–212 (2001)

  9. Hu, R., Fan, L., Liu, L.: Co-segmentation of 3D shapes via subspace clustering. CGF 31(5), 1703–1713 (2012)

    Google Scholar 

  10. Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. ACM Trans. Graph. 30(6), 125:1–125:12 (2011)

    Google Scholar 

  11. Jain, S., Neal, R.: A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. J. Comput. Graph. Stat. 13, 158–182 (2000)

    Article  MathSciNet  Google Scholar 

  12. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE TPAMI 21(5), 433–449 (1999)

    Article  Google Scholar 

  13. Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR) (2017)

  14. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29(4), 102:1–102:12 (2010)

    Article  Google Scholar 

  15. Kim, V.G., Li, W., Mitra, N.J., Chaudhuri, S., DiVerdi, S., Funkhouser, T.: Learning part-based templates from large collections of 3D shapes. ACM Trans. Graph. 32(4), 70:1–70:12 (2013)

    MATH  Google Scholar 

  16. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. 30(4), 79:1–79:12 (2011)

    Article  Google Scholar 

  17. Kohli, P., Pawan Kumar, M., Torr, P.H.S.: P3 & beyond: move making algorithms for solving higher order functions. IEEE TPAMI 31(9), 1645–56 (2009)

    Article  Google Scholar 

  18. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFS with Gaussian edge potentials. CoRR arXiv:1210.5644 (2012)

  19. Laga, H., Mortara, M., Spagnuolo, M.: Geometry and context for semantic correspondences and functionality recognition in man-made 3D shapes. ACM Trans. Graph. 32(5), 150:1–150:16 (2013)

    Article  Google Scholar 

  20. Liu, R., Zhang, H., Shamir, A., Cohen-Or, D.: A part-aware surface metric for shape analysis. Comput. Graph. Forum 28(2), 397–406 (2009)

    Article  Google Scholar 

  21. Luo, P., Wu, Z., Xia, C., Feng, L., Ma, T.: Co-segmentation of 3D shapes via multi-view spectral clustering. Vis. Comput. 29(6–8), 587–597 (2013)

    Article  Google Scholar 

  22. Lv, J., Chen, X., Huang, J., Bao, H.: Semi-supervised mesh segmentation and labeling. CGF 31(7), 2241–2248 (2012)

    Google Scholar 

  23. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

  24. Shamir, A.: A survey on mesh segmentation techniques. CGF 27(6), 1539–1556 (2008)

    MATH  Google Scholar 

  25. Shao, T., Monszpart, A., Zheng, Y., Koo, B., Xu, W., Zhou, K., Mitra, N.J.: Imagining the unseen: stability-based cuboid arrangements for scene understanding. ACM Trans. Graph. 33(6), 209:1–209:11 (2014)

    Article  MATH  Google Scholar 

  26. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3D objects. IJCV 89(2–3), 309–326 (2010)

    Article  Google Scholar 

  27. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE TPAMI 22(8), 888–905 (2000)

    Article  Google Scholar 

  28. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., Cohen-Or, D.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30(6), 126:1–126:10 (2011)

    Article  Google Scholar 

  29. van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., Hamarneh, G.: Prior knowledge for part correspondence. CGF 30(2), 553–562 (2011)

    Google Scholar 

  30. Wang, F., Huang, Q., Guibas, L.: Functional map networks for analyzing and exploring large shape collections. ACM Trans. Graph. 33(4), 36:1–37:11 (2014)

    MATH  Google Scholar 

  31. Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., Chen, B.: Active co-analysis of a set of shapes. ACM Trans. Graph. 31(6), 165 (2012)

    Article  Google Scholar 

  32. Wang, Y., Gong, M., Wang, T., Cohen-Or, D., Zhang, H., Chen, B.: Projective analysis for 3D shape segmentation. ACM Trans. Graph. 32(6), 192:1–192:12 (2013)

    MathSciNet  Google Scholar 

  33. Wu, Z., Wang, Y., Shou, R., Chen, B., Liu, X.: Unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering. Comput. Graph. 37(6), 628–637 (2013)

    Article  Google Scholar 

  34. Xie, Z., Xu, K., Liu, L., Xiong, Y.: 3D shape segmentation and labeling via extreme learning machine. CGF 33, 85–95 (2014)

    Google Scholar 

  35. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., Cheng, Z.Q.: Style-content separation by anisotropic part scales. ACM Trans. Graph. 29(6), 184:1–184:10 (2010)

    Article  Google Scholar 

  36. Xu, K., Zhang, H., Cohen-Or, D., Chen, B.: Fit and diverse: set evolution for inspiring 3D shape galleries. ACM Trans. Graph. 31(4), 57:1–57:10 (2012)

    Article  Google Scholar 

  37. Yang, Y., Xu, W., Guo, X., Zhou, K., Guo, B.: Boundary-aware multidomain subspace deformation. IEEE TVCG 19(10), 1633–1645 (2013)

    Google Scholar 

  38. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with poisson-based gradient field manipulation. ACM TOG 23(3), 644–651 (2004)

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 61502023) and National Natural Science Foundation of China (Grant No. U1736217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, B., Wang, Z. et al. Efficiently consistent affinity propagation for 3D shapes co-segmentation. Vis Comput 34, 997–1008 (2018). https://doi.org/10.1007/s00371-018-1538-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1538-2

Keywords

Navigation